Robust CMOS-compatible double gate and label-free C-reactive protein (CRP) sensor, based on silicon on insulator (SOI) silicon nanowires arrays.
Abstract:
“We present a CMOS-compatible double gate and label-free C-reactive protein (CRP) sensor, based on silicon on insulator (SOI) silicon nanowires arrays. We exploit a reference subtracted detection method and a super-Nernstian internal amplification given by the double gate structure. We overcome the Debye screening of charged CRP proteins in solutions using antibodies fragments as capturing probes, reducing the overall thickness of the capture layer. We demonstrate the internal amplification through the pH response of the sensor, in static and real-time working modes. While operated in back-gate configuration, the sensor shows excellent stability (<20 pA/min in the worst case), low hysteresis (<300 mV), and a great sensitivity up to 1.2 nA/dec toward CRP proteins in the linear response range. The reported system is an excellent candidate for the continuous monitoring of inflammation biomarkers in serum or interstitial fluid."
Find the technical paper here. Published 2/2022.
L. Capua et al., “Label-Free C-Reactive Protein Si Nanowire FET Sensor Arrays With Super-Nernstian Back-Gate Operation,” in IEEE Transactions on Electron Devices, doi: 10.1109/TED.2022.3144108.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Different interconnect standards and packaging options being readied for mass chiplet adoption.
Continued expansion in new and existing markets points to massive and sustained growth.
Aging equipment and rising demand are pushing up prices and slowing production.
Experts at the Table: Designing for context, and geopolitical impacts on a global supply chain.
Interest in this particular ISA is expanding, but the growth of other open-source hardware is less certain.
Nanosheets are likeliest option throughout this decade, with CFETs and other exotic structures possible after that.
Hybrid bonding opens up whole new level of performance in packaging, but it’s not the only improvement.
Why this is becoming a bigger issue, and what can be done to mitigate the effects.
Some 300mm tools are converted to 200mm; equipment prices and chip manufacturing costs are rising.
From low resistance vias to buried power rails, it takes multiple strategies to usher in 2nm chips.
Manufacturing 3D structures will require atomic-level control of what’s removed and what stays on a wafer.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Leave a Reply