A design environment for combining RFIC and MMIC designs on a substrate with newer packaging and integration.
RF-enabled next-generation communication systems and connected devices are differentiated by their performance, size, and cost. Traditionally, custom proprietary IC designs, leveraging the latest advanced-node technology, were developed to meet these product requirements. Increasingly these challenges are being met by moving beyond single IC solutions. Today’s electronic systems often integrate heterogeneous technologies to mitigate the high cost of homogeneous system-on-chip (SoC) solutions by enabling designers to combine proven RFIC and monolithic microwave IC (MMIC) designs on substrates using newer packaging and integration technologies. RF to mmWave Design for Systems Empowered by AWR Design Environment V16
Engineers trying to bring these products to market need best-in-class simulation technology and design automation to accurately predict the performance of larger, densely integrated circuits and subsystems designed for broadband and millimeter-wave (mmWave) spectrum. In addition, since these products are developed by diverse engineering teams across multiple design tools, RF design software must provide interoperability with the broader class of EDA tools used in the development of mixed-signal electronic systems.
Click here to read more in this technical brief about AWR Design Environment V16.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Different interconnect standards and packaging options being readied for mass chiplet adoption.
Continued expansion in new and existing markets points to massive and sustained growth.
Aging equipment and rising demand are pushing up prices and slowing production.
Experts at the Table: Designing for context, and geopolitical impacts on a global supply chain.
Interest in this particular ISA is expanding, but the growth of other open-source hardware is less certain.
Nanosheets are likeliest option throughout this decade, with CFETs and other exotic structures possible after that.
Hybrid bonding opens up whole new level of performance in packaging, but it’s not the only improvement.
Why this is becoming a bigger issue, and what can be done to mitigate the effects.
Some 300mm tools are converted to 200mm; equipment prices and chip manufacturing costs are rising.
From low resistance vias to buried power rails, it takes multiple strategies to usher in 2nm chips.
Manufacturing 3D structures will require atomic-level control of what’s removed and what stays on a wafer.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Leave a Reply