Atomic Layer Etch Expands To New Markets


The semiconductor industry is developing the next wave of applications for atomic layer etch (ALE), hoping to get a foothold in some new and emerging markets. ALE, a next-generation etch technology that removes materials at the atomic scale, is one of several tools used to process advanced devices in a fab. ALE moved into production for select applications around 2016, although the technolog... » read more

EUV’s Uncertain Future At 3nm And Below


Several foundries have moved extreme ultraviolet (EUV) lithography into production at both 7nm and 5nm, but now the industry is preparing for the next phase of the technology at 3nm and beyond. In R&D, the industry is developing new EUV scanners, masks and resists for the next nodes. 3nm is slated for 2022, followed by 2nm a year or two later. Nonetheless, it will require massive funding... » read more

A Node Too Far?


Physics is an unforgiving master. While the semiconductor industry has been actively developing new transistor structures, new materials for interconnects and lining trenches, and new approaches to alleviate congestion at the lowest metal levels, it also has been playing an accelerating game of Whac-a-Mole. Whenever a problem pops up, the solution to that problem is never complete and more prob... » read more

Scaling At The Angstrom Level


It now appears likely that 2nm will happen, and possibly the next node or two beyond that. What isn't clear is what those chips will be used for, by whom, and what they ultimately will look like. The uncertainty isn't about the technical challenges. The semiconductor industry understands the implications of every step of the manufacturing process down to the sub-nanometer level, including ho... » read more

Making Chips At 3nm And Beyond


Select foundries are beginning to ramp up their new 5nm processes with 3nm in R&D. The big question is what comes after that. Work is well underway for the 2nm node and beyond, but there are numerous challenges as well as some uncertainty on the horizon. There already are signs that the foundries have pushed out their 3nm production schedules by a few months due to various technical issu... » read more

Improving EUV Process Efficiency


The semiconductor industry is rethinking the manufacturing flow for extreme ultraviolet (EUV) lithography in an effort to improve the overall process and reduce waste in the fab. Vendors currently are developing new and potentially breakthrough fab materials and equipment. Those technologies are still in R&D and have yet to be proven. But if they work as planned, they could boost the flo... » read more

3nm: Blurring Lines Between SoCs, PCBs And Packages


Leading-edge chipmakers, foundries and EDA companies are pushing into 3nm and beyond, and they are encountering a long list of challenges that raise questions about whether the entire system needs to be shrunk onto a chip or into a package. For 7nm and 5nm, the problems are well understood. In fact, 5nm appears to be more of an evolution from 7nm than a major shift in direction. But at 3nm, ... » read more

5/3nm Wars Begin


Several foundries are ramping up their new 5nm processes in the market, but now customers must decide whether to design their next chips around the current transistor type or move to a different one at 3nm and beyond. The decision involves the move to extend today’s finFETs to 3nm, or to implement a new technology called gate-all-around FETs (GAA FETs) at 3nm or 2nm. An evolutionary step f... » read more

Multi-Patterning EUV Vs. High-NA EUV


Foundries are finally in production with EUV lithography at 7nm, but chip customers must now decide whether to implement their next designs using EUV-based multiple patterning at 5nm/3nm or wait for a new single-patterning EUV system at 3nm and beyond. This scenario revolves around ASML’s current extreme ultraviolet (EUV) lithography tool (NXE:3400C) versus a completely new EUV system with... » read more

Is There A Crossover Point For Mainstream Anymore?


Until 28nm, it was generally assumed that process nodes would go mainstream one or two generations after they were introduced. So by the time the leading edge chips for smartphones and servers were being developed at 16/14nm and 10/7nm, it was assumed that developing a chip at 28nm would be less expensive, less complex, and that the process rule deck would shrink. That worked for decades. Th... » read more

← Older posts Newer posts →