Thermal Challenges In Advanced Packaging


CT Kao, product management director at Cadence, talks with Semiconductor Engineering about why packaging is so complicated, why power and heat vary with different use cases and over time, and why a realistic power map is essential particularly for AI chips, where some circuits are always on.   Interested in more Semiconductor Engineering videos? Sign-up for our YouTube channel here » read more

Electromagnetic Challenges In High-Speed Designs


ANSYS’ Anand Raman, senior director, and Nermin Selimovic, product sales specialist, talk with Semiconductor Engineering about how to deal with rising complexity and tighter tolerances in AI, 5G, high-speed SerDes and other chips developed at the latest process nodes where the emphasis is on high performance and low power. » read more

New Trends In Wafer Bonding


Unable to scale horizontally, due to a combination of lithography delays and power constraints, manufacturers are stacking devices vertically. This has become essential as the proliferation of mobile devices drives demand for smaller circuit footprints, but the transition isn't always straightforward. Three-dimensional integration schemes take many forms, depending on the required interconne... » read more

Speeding Up 3D Design


2.5D and 3D designs have garnered a lot of attention recently, but when should these solutions be considered and what are the dangers associated with them? Each new packaging option trades off one set of constraints and problems for a different set, and in some cases the gains may not be worth it. For other applications, they have no choice. The tooling in place today makes it possible to de... » read more

Addressing Pain Points In Chip Design


Semiconductor Engineering sat down to discuss the impact of multi-physics and new market applications on chip design with John Lee, general manager and vice president of ANSYS' Semiconductor Business Unit; Simon Burke, distinguished engineer at Xilinx, Duane Boning, professor of electrical engineering and computer science at MIT; and Thomas Harms, director EDA/IP Alliance at Infineon. What foll... » read more

Migrating 3D Into The Mainstream


Semiconductor Engineering sat down to discuss changes required throughout the ecosystem to support three-dimensional (3D) chip design with Norman Chang, chief technologist for ANSYS' Semiconductor Business Unit; John Park, product management director for IC packaging and cross-platform solutions at Cadence; John Ferguson, director of marketing for DRC applications at Mentor, a Siemens Business;... » read more

What’s The Best Advanced Packaging Option?


As traditional chip designs become more unwieldy and expensive at each node, many IC vendors are exploring or pursuing alternative approaches using advanced packaging. The problem is there are too many advanced packaging options on the table already, and the list continues to grow. Moreover, each option has several tradeoffs and challenges, and all of them are still relatively expensive. ... » read more

Less Margin, More Respins, And New Markets


Semiconductor Engineering sat down to discuss the impact of multi-physics and new market applications on chip design with John Lee, general manager and vice president of ANSYS' Semiconductor Business Unit; Simon Burke, distinguished engineer at Xilinx; Duane Boning, professor of electrical engineering and computer science at MIT; and Thomas Harms, director EDA/IP Alliance at Infineon. What foll... » read more

Security Tradeoffs In A Shifting Global Supply Chain


Experts at the Table: Semiconductor Engineering sat down to discuss a wide range of hardware security issues and possible solutions with Norman Chang, chief technologist for the Semiconductor Business Unit at ANSYS; Helena Handschuh, fellow at Rambus, and Mike Borza, principal security technologist at Synopsys. What follows are excerpts of that conversation. The first part of this discussion ca... » read more

The Race To Next-Gen 2.5D/3D Packages


Several companies are racing each other to develop a new class of 2.5D and 3D packages based on various next-generation interconnect technologies. Intel, TSMC and others are exploring or developing future packages based on one emerging interconnect scheme, called copper-to-copper hybrid bonding. This technology provides a way to stack advanced dies using copper connections at the chip level,... » read more

← Older posts Newer posts →