Blog Review: June 13


Synopsys' Taylor Armerding looks at what the flaws in OpenPGP and S/MIME encryption means for the IoT and warns that the problems of patching such devices could lead to an increasing chance of security failures. Cadence's Paul McLellan takes a peek at Imec's roadmap to see what the path to 3nm looks like, how nanosheets fit in, and why design and system technology co-optimization is necessar... » read more

New Transistor Types Vs. Packaging


Plans are being formulated for the rollout of multiple types of gate-all-around FETs and literally dozens of advanced packaging options. The question now is which ones will achieve critical mass, because there aren't enough chips in the world to support all of them profitably. FinFETs, which were first introduced by Intel at 22nm, are running out of steam. While they will survive 10/7nm, and... » read more

Extending The IC Roadmap


An Steegen, executive vice president of semiconductor technology and systems at Imec, sat down with Semiconductor Engineering to discuss IC scaling and chip packaging. Imec is working on next-generation transistors, but it is also developing several new technologies for IC packaging, such as a proprietary silicon bridge, a cooling technology and packaging modules. What follows are excerpts of t... » read more

Quantum Effects At 7/5nm And Beyond


Quantum effects are becoming more pronounced at the most advanced nodes, causing unusual and sometimes unexpected changes in how electronic devices and signals behave. Quantum effects typically occur well behind the curtain for most of the chip industry, baked into a set of design rules developed from foundry data that most companies never see. This explains why foundries and manufacturing e... » read more

The Case For Chiplets


Discussion about chiplets is growing as the cost of developing chips at 10/7nm and beyond passes well beyond the capabilities of many chipmakers. Estimates for developing 5nm chips (the equivalent 3nm for TSMC and Samsung) are well into the hundreds of millions of dollars just for the NRE costs alone. Masks costs will be in the double-digit millions of dollars even with EUV. And that's assum... » read more

Tech Talk: 7/5/3nm Signoff


Anand Raman, director of technical marketing at Helic, explains what's needed to improve confidence in designs at the most advanced process nodes. https://youtu.be/2O2pbMJSta4 » read more

DSA Re-Enters Litho Picture


By Mark LaPedus and Ed Sperling Directed self-assembly (DSA) is moving back onto the patterning radar screen amid ongoing challenges in lithography. Intel continues to have a keen interest in [gettech id="31046" t_name="DSA"], while other chipmakers are taking another hard look at the technology, according to multiple industry sources. DSA isn't like a traditional [getkc id="80" kc_name="... » read more

Why All Nodes Won’t Work


A flood of new nodes, half-nodes and every number in between is creating confusion among chipmakers. While most say it's good to have choices, it's not clear which or how many of those choices are actually good. At issue is which [getkc id="43" kc_name="IP"] will be available for those nodes, how that IP will differ from other nodes in terms of power, performance, area and sensitivity to a v... » read more

Tech Talk: 5/3nm Parasitics


Ralph Iverson, principal R&D engineer at Synopsys, talks about parasitic extraction at 5/3nm and what to expect with new materials and gate structures such as gate-all-around FETs and vertical nanowire FETs. https://youtu.be/24C6byQBkuI » read more

Transistor Options Beyond 3nm


Despite a slowdown in chip scaling amid soaring costs, the industry continues to search for a new transistor type 5 to 10 years out—particularly for the 2nm and 1nm nodes. Specifically, the industry is pinpointing and narrowing down the transistor options for the next major nodes after 3nm. Those two nodes, called 2.5nm and 1.5nm, are slated to appear in 2027 and 2030, respectively, accord... » read more

← Older posts Newer posts →