Memory Access In AI Systems


Memory access is a key consideration in AI system design. Ron Lowman, strategic marketing manager for IP at Synopsys, talks about how memory affects overall power consumption, why partitioning of on-chip and off-chip is so critical to performance and power, and how this changes from the cloud to the edge. » read more

The Race To Much More Advanced Packaging


Momentum is building for copper hybrid bonding, a technology that could pave the way toward next-generation 2.5D and 3D packages. Foundries, equipment vendors, R&D organizations and others are developing copper hybrid bonding, which is a process that stacks and bonds dies using copper-to-copper interconnects in advanced packages. Still in R&D, hybrid bonding for packaging provides mo... » read more

Semiconductor Memory Evolution And Current Challenges


The very first all-electronic memory was the Williams-Kilburn tube, developed in 1947 at Manchester University. It used a cathode ray tube to store bits as dots on the screen’s surface. The evolution of computer memory since that time has included numerous magnetic memory systems, such as magnetic drum memory, magnetic core memory, magnetic tape drive, and magnetic bubble memory. Since the 19... » read more

Atomic Layer Etch Expands To New Markets


The semiconductor industry is developing the next wave of applications for atomic layer etch (ALE), hoping to get a foothold in some new and emerging markets. ALE, a next-generation etch technology that removes materials at the atomic scale, is one of several tools used to process advanced devices in a fab. ALE moved into production for select applications around 2016, although the technolog... » read more

Moving Data And Computing Closer Together


The speed of processors has increased to the point where they often are no longer the performance bottleneck for many systems. It's now about data access. Moving data around costs both time and power, and developers are looking for ways to reduce the distances that data has to move. That means bringing data and memory nearer to each other. “Hard drives didn't have enough data flow to cr... » read more

Power Impact At The Physical Layer Causes Downstream Effects


Data movement is rapidly emerging as one of the top design challenges, and it is being complicated by new chip architectures and physical effects caused by increasing density at advanced nodes and in multi-chip systems. Until the introduction of the latest revs of high-bandwidth memory, as well as GDDR6, memory was considered the next big bottleneck. But other compute bottlenecks have been e... » read more

China Speeds Up Advanced Chip Development


China is accelerating its efforts to advance its domestic semiconductor industry, amid ongoing trade tensions with the West, in hopes of becoming more self-sufficient. The country is still behind in IC technology and is nowhere close to being self-reliant, but it is making noticeable progress. Until recently, China’s domestic chipmakers were stuck with mature foundry processes with no pres... » read more

Essential DDR5 Features Designers Must Know


JEDEC has defined and developed three DDR standards – standard DDR, mobile DDR, and graphic DDR – to help designers meet their memory requirements. DDR5 will support a higher data rate (up to 6400 Mb/s) at a lower I/O Voltage (1.1V) and a higher density (based on 16Gb DRAM dies) than DDR4. DDR5 DRAMs and dual-inline memory modules (DIMMs) are expected to hit the market in 2020. This article... » read more

The Good And Bad Of Chiplets


The chiplet model continues to gain traction in the market, but there are still some challenges to enable broader support for the technology. AMD, Intel, TSMC, Marvell and a few others have developed or demonstrated devices using chiplets, which is an alternative way to develop an advanced design. Beyond that, however, the adoption of chiplets is limited in the industry due to ecosystem issu... » read more

Challenges In Stacking, Shrinking And Inspecting Next-Gen Chips


Rick Gottscho, CTO of Lam Research, sat down with Semiconductor Engineering to discuss memory and equipment scaling, new market demands, and changes in manufacturing being driven by cost, new technologies, and the application of machine learning. What follows are excerpts of that conversation. SE: We have a lot of different memory technologies coming to market. What's the impact of that? ... » read more

← Older posts Newer posts →