A Full-GaN Solution For High Power Density Chargers And Adapters


Due to continuous demand for high power density, USB-C fast chargers’ switching frequencies need to be increased to reduce the size of the transformers and the filter components. Emerging technologies based on Wide Band Gap (WBG) semiconductor materials enable new approaches to increase power density. At high switching frequencies, GaN HEMTs for synchronous rectifier (SR) switches have the ad... » read more

Improving Machine Learning-Based Modeling of Semiconductor Devices by Data Self-Augmentation


Abstract: "In the electronics industry, introducing Machine Learning (ML)-based techniques can enhance Technology Computer-Aided Design (TCAD) methods. However, the performance of ML models is highly dependent on their training datasets. Particularly in the semiconductor industry, given the fact that the fabrication process of semiconductor devices is complicated and expensive, it is of grea... » read more

GaN ICs Wanted for Power, EV Markets


Circuits built with discrete GaN components may get the job done, but fully integrated GaN circuits remain the ultimate goal because they would offer many of the same advantages as integrated silicon circuits. These benefits include lower cost as the circuit footprint is scaled, and reduced parasitic resistance and capacitance with shorter interconnect runs. In addition, improved device perf... » read more

HBM, Nanosheet FETs Drive X-ray Fab Use


Paul Ryan, vice president and general manager of Bruker’s X-ray Business, sat down with Semiconductor Engineering to discuss the movement of x-ray metrology into manufacturing to better control nanosheet film stacks and solder bump quality. SE: Where are you seeing the greatest growth right now, and what are the critical drivers for your technology from the application side? Ryan: One b... » read more

Review on Driving Circuits for Wide-Bandgap Semiconductor Switching Devices for Mid- to High-Power Applications


Abstract: "Wide-bandgap (WBG) material-based switching devices such as gallium nitride (GaN) high electron mobility transistors (HEMTs) and silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) are considered very promising candidates for replacing conventional silicon (Si) MOSFETs for various advanced power conversion applications, mainly because of their capabi... » read more

Inspecting And Testing GaN Power Semis


As demand for new automotive battery electric vehicles (BEVs) heats up, automakers are looking for solutions to meet strict zero-defect goals in power semiconductors. Gallium nitride (GaN) and silicon carbide (SiC) wide-bandgap power semiconductors offer automakers a range of new EV solutions, but questions remain on how to meet the stringent quality goals of the automotive industry. Among t... » read more

GaN Application Base Widens, Adoption Grows


Gallium nitride (GaN) is beginning to show up across a broad range of power semiconductor applications due to its wide bandgap, enabling fast-charging, very high speeds, and much smaller form factors than silicon-based chips. Unlike silicon carbide (SiC), another wide-bandgap technology, GaN is a lateral rather than a vertical device. GaN tops out at about 900 volts, which limits its use in ... » read more

Revving Up SiC And GaN


Silicon carbide (SiC) and gallium nitride (GaN) are becoming more popular for power electronics, particularly in automotive applications, driving down costs as volumes scale up and increasing the demand for better tools to design, verify, and test these wide-bandgap devices. Both SiC and GaN are proving essential in areas such as battery management in electric vehicles. They can handle much ... » read more

Innovative Technology Drives Rapid Deployment Of New 5G Products, Services, And Business Models


The wireless future is about developing the most compelling products using a combination of advanced technologies to maximize system performance, while optimizing both cost and power. Doing so will unlock deployment of new 5G products and services for mobile operators and the whole 5G ecosystem, from businesses to consumers to the economy. With 5G offering so much potential, how can the industr... » read more

Apple’s First GaN Charger


It has been heavily rumored and anticipated for a few years now, but we have finally seen Apple make the switch to using gallium nitride (GaN) as the power transistor in one of their charging products: the 140 W charger for the new 16-inch MacBook Pro. As has been the case with many innovations in the past, Apple may not be the first, but when they do adopt a technology people take notice! A... » read more

← Older posts Newer posts →