Research Bits: July 22


Sub-1nm gate Researchers from Korea's Institute for Basic Science, Sungkyunkwan University, Harvard University, and Korea Advanced Institute of Science and Technology (KAIST) found a method that enables epitaxial growth of 1D metallic materials with a width of less than 1 nm, which they used as a gate electrode of a miniaturized transistor. The team controlled the crystal structure of molyb... » read more

Cybord: Electronic Component Traceability


Counterfeit electronics is a multibillion-dollar industry worldwide. The challenge is finding them, and this is where Israeli startup Cybord is working to gain a foothold. The company has developed an AI-driven solution that checks for counterfeit parts during product assembly. “It's a huge task to check electronic components, said Cybord CEO Zeev Efrat. "It's not capacitors only, or resis... » read more

Supply Chain Security And Counterfeit Detection Using Universal Chip Telemetry (UCT)


The recent shortage of chip supply and long lead times prompted system makers to turn to second tier suppliers and distributors for fulfilling their semiconductor needs. This in turn has put the spotlight on the growing concern of fraudulent or counterfeited Integrated Circuits (ICs). Proteus deep data analytics based on Universal Chip Telemetry (UCT) provides a new approach to supply chain ... » read more

Multicolored Nanocolloidal Hydrogel Inks For Anti-Counterfeiting


Abstract "Nanocolloidal gels are emerging as a promising class of materials with applications as inks in 2D and 3D printing. Polymer nanoparticles (NPs) offer many advantages as potential building blocks of nanocolloidal gels, due to the ability to control NP dimensions, charge, surface chemistry, and functionality; however, their applications as inks in printing are yet to be explored. Here, ... » read more

Probe assisted localized doping of aluminum into silicon substrates


Abstract "This paper discusses the development of a rapid, large-scale integration of deterministic dopant placement technique for encoding information in physical structures at the nanoscale. The doped structures inherit identical and customizable radiofrequency (RF) electronic signature, which could be leveraged into an identification feature unique to the tag item. This will allow any manuf... » read more

Power/Performance Bits: Dec. 1


Self-erasing chip Researchers from the University of Michigan developed self-erasing chips that could be used to prevent counterfeiting or detect tampering. The technology is based on a new material that temporarily stores energy, changing the color of the light it emits. It self-erases in a matter of days, or it can be erased on demand. "It's very hard to detect whether a device has been t... » read more

Combating Counterfeit Chips


The harsh reality is that today, the authenticity of chips is often impossible to guarantee. The counterfeit chip market is sizeable and growing with a worldwide value estimated at $75B in 2019. Those counterfeits are believed to have been integrated into more than $169B of electronic devices. Recent confirmed incidents of counterfeit parts found in electronic systems include defibrillators, ai... » read more

Power/Performance Bits: July 28


Programmable photonics Researchers from the University of Southampton developed a method for making programmable  integrated switching units on a silicon photonics chip. By using a generic optical circuit that can be fabricated in bulk then later programmed for specific applications, the team hopes to reduce production costs. "Silicon photonics is capable of integrating optical devices and... » read more

Combating Counterfeit Semiconductors in the Automotive Supply Chain


The counterfeit market for semiconductors is real, sizable and growing. Industry analysts peg the current market for fake semiconductors at $75B. Counterfeit chips pose great risk to driver comfort and safety, to say nothing of the severe negative consequences they present to automaker revenues and brand. The good news is there are immediate and cost-effective measures available to secu... » read more

Putting A Hardware Root-of-Trust To Work In An Anti-Counterfeiting IC


An anti-counterfeiting security IC is conceptually rather simple: during manufacture, it is securely programmed with some secret data. Then during operation, it can prove to a verifying host that it knows that secret data. This “proof of knowledge” is often all that can be expected of a low-cost security IC. This prove-you-know-the-secret authentication process between the security IC an... » read more