Understanding CFETs, A Next Generation Transistor Architecture


Computing power has experienced exponential growth over the last 70 years. This has largely been achieved through transistor scaling. Due to a continuous reduction in the size of transistors, engineers have been able to pack more and more of them onto a single chip [1]. This has led to faster, more powerful, and more energy-efficient devices. Improvements in fabrication processes and materials,... » read more

Building CFETs With Monolithic And Sequential 3D


Successive versions of vertical transistors are emerging as the likely successor to finFETs, combining lower leakage with significant area reduction. A stacked nanosheet transistor, introduced at N3, uses multiple channel layers to maintain the overall channel length and necessary drive current while continuing to reduce the standard cell footprint. The follow-on technology, the CFET, pushes... » read more

Full Wafer Integration of Aggressively Scaled 2D-Based Logic Circuits (Imec)


A technical paper titled "Challenges of Wafer-Scale Integration of 2D Semiconductors for High-Performance Transistor Circuits" was published by researchers at Imec. "The introduction of highly scaled 2D-based circuits for high-performance logic applications in production is projected to be implemented after the Si-sheet-based CFET devices. Here, a view on the requirements needed for full waf... » read more

Week In Review: Manufacturing, Test


Node scaling wars are revving up, although much of the action is happening where most people can't see it — inside of research labs. This is difficult stuff, which makes delivery dates difficult to pinpoint, and no one wants to give away their competitive position or commit to a timeline they can't keep. Billions of dollars of leading-edge research — funded by pure-play foundry TSMC, IDM... » read more

Manufacturing Bits: Nov. 17


Intel’s gate-all-around FETs At the upcoming IEEE International Electron Devices Meeting (IEDM), Intel is expected to present papers on its efforts to develop gate-all-around transistors. One paper from Intel describes a more conventional gate-all-around transistor technology called a nanosheet FET. Another paper involves a next-generation NMOS-on-PMOS nanoribbon transistor technology. (F... » read more

Manufacturing Bits: July 14


Complementary FETs At the recent 2020 Symposia on VLSI Technology and Circuits, Imec presented a paper on a 3D complementary field-effect transistor (CFET) made on 300mm wafers. As a demonstration vehicle, Imec showed a CFET based on a 14nm process. Ideally, though, CFETs are next-generation transistors that are targeted for the 1nm node in the future. On the transistor front, chipmaker... » read more

A Benchmark Study Of Complementary-Field Effect Transistor (CFET) Process Integration Options: Comparing Bulk vs. SOI vs. DSOI Starting Substrates


Sub-5 nm logic nodes will require an extremely high level of innovation to overcome the inherent real-estate limitations at this increased device density. One approach to increasing device density is to look at the vertical device dimension (z-direction), and stack devices on top of each other instead of conventionally side-by-side. The fabrication of a Complementary-Field Effect Transistor (CF... » read more

Introducing Nanosheets Into Complementary-Field Effect Transistors (CFETs)


In our November 2019 blog [1], we discussed using virtual fabrication (SEMulator3D) to benchmark different process integration options for Complementary-FET (CFET) fabrication. CFET is a CMOS architecture that was proposed by imec in 2018 [2]. This architecture contains p- and n-MOSFET structures built on top of each other, instead of having them located side-by-side. In our previous blog, we r... » read more

A Study Of Next-Generation CFET Process Integration Options


Decision making is a critical step in semiconductor technology development. R&D semiconductor engineers must consider different design and process options early in the development of a next-generation technology. Established techniques such as Failure Mode and Effect Analysis (FMEA) can be used to select among the most promising design and process choices. Once specific design and process m... » read more

A Benchmark Study Of Complementary-Field Effect Transistor (CFET) Process Integration Options


Sub-5 nm logic nodes will require an extremely high level of innovation to overcome the inherent real-estate limitations at this increased device density. One approach to increasing device density is to look at the vertical device dimension (z-direction), and stack devices on top of each other instead of conventionally side-by-side. [1] The fabrication of a Complementary-Field Effect Transistor... » read more

← Older posts