What’s So Different About Interposer Signal Integrity?


By Kelly Damalou and Pete Gasperini To achieve gains in power, performance, area, and cost, 3D-IC architectures are pushing electronics design to new limits. Silicon integration technology and associated devices have undergone an impressive evolution over the last several decades. Their development encourages technological advancement in applications like high-performance computing, Artificial... » read more

Raising IP Integration Up A Level


An increase in the number and complexity of IP blocks, coupled with changing architectures and design concerns, are driving up the need for new tools that can enable, automate, and optimize integration in advanced chips and packages. Power, security, verification and a host of other issues are cross-cutting concerns, and they make pure hierarchical approaches difficult. Adding to future comp... » read more

Which Foundry Is In The Lead? It Depends.


The multi-billion-dollar race for foundry leadership is becoming more convoluted and complex, making it difficult to determine which company is in the lead at any time because there are so many factors that need to be weighed. This largely is a reflection of changes in the customer base at the leading edge and the push toward domain-specific designs. In the past, companies like Apple, Google... » read more

HBM3 In The Data Center


Frank Ferro, senior director of product management at Rambus, talks about the forthcoming HBM3 standard, why this is so essential for AI chips and where the bottlenecks are today, what kinds of challenges are involved in working with this memory, and what impact chiplets and near-memory compute will have on HBM and bandwidth.     » read more

Heterogeneous Integration Co-Design Won’t Be Easy


The days of “throwing it over the wall” are over. Heterogeneous integration is ushering in a new era of silicon chip design with collaboration at its core—one that lives or dies on seamless interaction between your analog and digital IC and package design teams. Heterogeneous integration is the use of advanced packaging technologies to combine smaller, discrete chiplets into one syste... » read more

IC Architectures Shift As OEMs Narrow Their Focus


Diminishing returns from process scaling, coupled with pervasive connectedness and an exponential increase in data, are driving broad changes in how chips are designed, what they're expected to do, and how quickly they're supposed to do it. In the past, tradeoffs between performance, power, and cost were defined mostly by large OEMs within the confines of an industry-wide scaling roadmap. Ch... » read more

Holistic 3D-IC Interposer Analysis In Product Designs


The miniaturization trend in electronic devices and the rise in smart and IoT device segments make adopting heterogeneous integration of chip components or 3D-ICs a viable option for miniaturization and better interconnection. This vertical stacking of ICs enables the next generation of sophisticated, intelligent devices, necessitating high chip density and terabytes of bandwidth. As per the f... » read more

10 Questions: Handel Jones


Handel Jones, CEO of International Business Strategies and author of a new book, "When AI Rules The World," sat down with Semiconductor Engineering to talk about the growth and impact of AI. What follows are excerpts of that conversation. SE: What do you see as the impact of AI on semiconductors? Jones: The fact that you have a 5G smart phone is because of AI. Steve Jobs changed the smart... » read more

How To Compare Chips


Traditional metrics for semiconductors are becoming much less meaningful in the most advanced designs. The number of transistors packed into a square centimeter only matters if they can be utilized, and performance per watt is irrelevant if sufficient power cannot be delivered to all of the transistors. The consensus across the chip industry is that the cost per transistor is rising at each ... » read more

What Is UCIe?


The semiconductor industry is undertaking a major strategy shift towards multi-die systems. The shift is fueled by several converging trends: Size of monolithic SoCs is becoming too big for manufacturability Some SoC functionalities may require different process nodes for optimal implementation Desire for enhanced product scalability and composability is increasing Multi-die syste... » read more

← Older posts Newer posts →