Overcoming Chiplet Integration Challenges With Adaptability


Chiplets are exploding in popularity due to key benefits such as lower cost, lower power, higher performance and greater flexibility to meet specific market requirements. More importantly, chiplets can reduce time-to-market, thus decreasing time-to-revenue! Heterogeneous and modular SoC design can accelerate innovation and adaptation for many companies. What’s not to like about chiplets? Well... » read more

UCIe And Automotive Electronics: Pioneering The Chiplet Revolution


The automotive industry stands at the brink of a profound transformation fueled by the relentless march of technological innovation. Gone are the days of the traditional, one-size-fits-all system-on-chip (SoC) design framework. Today, we are witnessing a paradigm shift towards a more modular approach that utilizes diverse chiplets, each optimized for specific functionalities. This evolution pro... » read more

Adapting To Evolving IC Requirements


As chip designs become increasingly heterogeneous and domain-specific, packing a device with one-size-fits-all chips or chiplets doesn't make sense. The key is rightsizing different components based on real workloads, so they don't waste power when there is too little utilization of logic, and so they don't struggle to complete tasks because they are undersized. Jayson Bethurem, vice president ... » read more

Sensor Fusion Challenges In Automotive


The number of sensors in automobiles is growing rapidly alongside new safety features and increasing levels of autonomy. The challenge is integrating them in a way that makes sense, because these sensors are optimized for different types of data, sometimes with different resolution requirements even for the same type of data, and frequently with very different latency, power consumption, and re... » read more

EDA Looks Beyond Chips


Large EDA companies are looking at huge new opportunities that reach well beyond semiconductors, combining large-scale multi-physics simulations with methodologies and tools that were developed for chips. Top EDA executives have been talking about expanding into adjacent markets for more than a decade, but the broader markets were largely closed to them. In fact, the only significant step in... » read more

The 3D-IC Multiphysics Challenge Dictates A Shift-Left Strategy


As the industry marches forward in a 3D-IC centric design approach (figure 1), we are facing a new problem. Sometimes referred to as “electro-thermal” or “electro-thermo-mechanical,” it really is the confluence of multiple forms of physics exerting impacts on both the physical manufacture and structure of these multi-die designs and their electrical behavior. Fig. 1: Illustration... » read more

Research Bits: April 23


Probabilistic computer prototype Researchers at Tohoku University and the University of California Santa Barbara created a prototype of a heterogeneous probabilistic computer that combines a CMOS circuit with a limited number of stochastic nanomagnets. It aims to improve the execution of probabilistic algorithms used to solve problems where uncertainty is inherent or where an exact solution... » read more

Electromigration Concerns Grow In Advanced Packages


The incessant demand for more speed in chips requires forcing more energy through ever-smaller devices, increasing current density and threatening long-term chip reliability. While this problem is well understood, it's becoming more difficult to contain in leading-edge designs. Of particular concern is electromigration, which is becoming more troublesome in advanced packages with multiple ch... » read more

What Works Best For Chiplets


The semiconductor industry is preparing for the migration from proprietary chiplet-based systems to a more open chiplet ecosystem, in which chiplets fabricated by different companies of various technologies and device nodes can be integrated in a single package with acceptable yield. To make this work as expected, the chip industry will have to solve a variety of well-documented technical an... » read more

Powering The Automotive Revolution: Advanced Packaging For Next-Generation Vehicle Computing


Automotive processors are rapidly adopting advanced process nodes. NXP announced the development of 5 nm automotive processors in 2020 [1], Mobileye announced EyeQ Ultra using 5 nm technology during CES 2022 [2], and TSMC announced its “Auto Early” 3 nm processes in 2023 [3]. In the past, the automotive industry was slow to adopt the latest semiconductor technologies due to reliability conc... » read more

← Older posts Newer posts →