Exponentials At The Edge


The age of portable communication has set off a scramble for devices that can achieve almost anything a desktop computer could handle even five years ago. But this is just the beginning. The big breakthrough with mobile devices was the ability to combine voice calls, text and eventually e-mail, providing the rudiments of a mobile office-all on a single charge of a battery that was light enou... » read more

Is 7nm The Last Major Node?


A growing number of design and manufacturing issues are prompting questions about what scaling will really look like beyond 10/7nm, how many companies will be involved, and which markets they will address. At the very least, node migrations will go horizontally before proceeding numerically. There are expected to be more significant improvements at 7nm than at any previous node, so rather th... » read more

Inside Lithography And Masks


Semiconductor Engineering sat down to discuss lithography and photomask technologies with Gregory McIntyre, director of the Advanced Patterning Department at [getentity id="22217" comment="IMEC"]; Harry Levinson, senior fellow and senior director of technology research at [getentity id="22819" comment="GlobalFoundries"]; David Fried, chief technology officer at [getentity id="22210" e_name="Cov... » read more

Optimizing DRAM Development Using Directed Self-Assembly (DSA)


Directed Self-Assembly (DSA) is an emerging technology that has the ability to substantially improve lithographic manufacturing of semiconductor devices. In DSA, copolymer materials self-assemble to form nanoscale resolution patterns on the semiconductor substrate. DSA technologies hold the promise to substantially improve the resolution of existing lithographic processes (such as self-aligned ... » read more

Reflecting Back On 2016


Anyone can make a prediction, and sometimes the more outlandish they are the more they get noticed. But at the end of the year some people hit the mark while others may have been way off. Many people simply make projections based on the current trajectory of trends, while others look for the potential discontinuities that may lie ahead. Semiconductor Engineering examines the projections made... » read more

What Happened To DSA?


Directed self-assembly (DSA) was until recently a rising star in the next-generation lithography (NGL) landscape, but the technology has recently lost some of its luster, if not its momentum. So what happened? Nearly five years ago, an obscure patterning technology called [gettech id="31046" t_name="DSA"] burst onto the scene and began to generate momentum in the industry. At about that t... » read more

Inside Process Technology


Semiconductor Engineering sat down to discuss the foundry business, memory, process technology, lithography and other topics with David Fried, chief technology officer at [getentity id="22210" e_name="Coventor"], a supplier of predictive modeling tools. What follows are excerpts of that conversation. SE: Chipmakers are ramping up 16nm/14nm finFETs today, with 10nm and 7nm finFETs just around... » read more

Where Is Next-Gen Lithography?


Semiconductor Engineering sat down to discuss lithography and photomask technologies with Greg McIntyre, director of the Advanced Patterning Department at Imec; Harry Levinson, senior fellow and senior director of technology research at GlobalFoundries; Uday Mitra, vice president and head of strategy and marketing for the Etch Business Unit and Patterning Module at Applied Materials; Naoya Haya... » read more

Will Directed Self-Assembly Pattern 14nm DRAM?


Will directed self-assembly (DSA) join Extreme Ultraviolet (EUV) Lithography and next-generation multi-patterning techniques to pattern the next memory and logic technologies? Appealing to the wisdom of crowds, the organizers of the 2015 1st International DSA symposium recently surveyed the attendees. Nearly 75% believed DSA would insert into high-volume manufacturing within the next 5 years... » read more

7nm Lithography Choices


Chipmakers are ramping up their 16nm/14nm logic processes, with 10nm expected to move into early production later this year. Barring a major breakthrough in lithography, chipmakers are using today’s 193nm immersion and multiple patterning for both 16/14nm and 10nm. Now, chipmakers are focusing on the lithography options for 7nm. For this, they hope to use a combination of two technologies ... » read more

← Older posts Newer posts →