10nm FinFET Market Heats Up


The 10nm finFET market is heating up in the foundry business amid the ongoing push to develop chips at advanced nodes. Not long ago, Intel announced its 10nm finFET process, with plans to ramp up the technology in 2017. Then, TSMC recently introduced its 10nm process, with plans to move into production by the fourth quarter of 2016. Now, Samsung Electronics said that it has commenced mass... » read more

450mm And Other Emergency Measures


Talk about boosting wafer sizes from 300mm to 450mm has been creeping back into presentations and discussions at conferences over the past couple months. Earlier this year, discussions focused on panel-level packaging. These are basically similar approaches to the same problem, which is that wafers need to be larger to reap efficiencies out of device scaling. Whether either of these approach... » read more

Mask Maker Worries Grow


Photomasks are becoming more complex and expensive at each node, thereby creating a number of challenges on several fronts. For one thing, the features on the [getkc id="265" kc_name="photomask"] are becoming smaller and more complex at each node. Second, the number of masks per mask-set are increasing as a result of multiple patterning. Third, it costs more to build and equip a new mask fab... » read more

Deploying Multi-Beam Mask Writers


Elmar Platzgummer, chief executive of IMS Nanofabrication, sat down with Semiconductor Engineering to discuss the company’s deal with Intel, photomasks, multi-beam mask writer technology and other topics. What follows are excerpts of that conversation. SE: This has been a significant year for IMS for two reasons. First, Intel recently announced plans to acquire IMS. Second, at the recent ... » read more

Defect Evolution In Next-Generation Extreme Ultraviolet Lithography


Extreme ultraviolet (EUV) lithography is a promising next generation lithography technology that may succeed optical lithography at future technology nodes. EUV mask infrastructure and manufacturing of defect-free EUV mask blanks is a key near term challenge in the use of EUV lithography. Virtual fabrication is a computerized technique to perform predictive, three dimensional modeling of sem... » read more

Good Filters, Poor Resists


Shrinking feature sizes and more complex lithography schemes are increasing the pressure on all aspects of the lithography process, including resists and resist filtration. As Clint Haris, vice president and general manager for liquid micro contamination control at Entegris explained, fabs are pushing resist manufacturers toward more stringent control of both contaminants and “soft particl... » read more

Speeding Up Mask Production


Chip production is becoming more complex and expensive at each node. As a result, chipmakers require a growing number of new manufacturing technologies to enable the next wave of devices at advanced nodes. In the fab, for example, the most obvious need is extreme ultraviolet ([gettech id="31045" comment="EUV"]) lithography. In addition, chipmakers also need a new class of atomic-level proces... » read more

How Small Will Transistors Go?


By Mark LaPedus & Ed Sperling There is nearly universal agreement that Moore’s Law is slowing down. But whether it will truly end, or just become too expensive and less relevant—and what will supplant device scaling—are the subject of some far-reaching research and much discussion. Semiconductor Engineering sat down with each of the leaders of three top research houses—[getent... » read more

Mask Maker Worries Grow


Leading-edge photomask makers face a multitude of challenges as they migrate from the 14nm node and beyond. Mask making is becoming more challenging and expensive at each node on at least two fronts. On one front, mask makers must continue to invest in the development of traditional optical masks at advanced nodes. On another front, several photomask vendors are preparing for the possible ra... » read more

What Transistors Will Look Like At 5nm


Chipmakers are currently ramping up 16nm/14nm finFET processes, with 10nm and 7nm just around the corner. The industry also is working on 5nm. TSMC hopes to deliver a 5nm process by 2020. GlobalFoundries, Intel and Samsung are doing R&D for that node. But 5nm technology presents a multitude of unknowns and challenges. For one thing, the exact timing and specs of 5nm remain cloudy. The... » read more

← Older posts Newer posts →