中文 English

China Accelerates Foundry, Power Semi Efforts


China has unveiled several initiatives to advance its domestic semiconductor industry, including a new and massive fab expansion campaign in the foundry, gallium-nitride (GaN), and silicon carbide (SiC) markets. The nation is making a big push into what it calls “third-generation semiconductors,” which is a misnomer. The term actually refers to two existing and common power semiconductor... » read more

Dynamic in-chip current distribution simulation technology for power device layout design


Abstract: "This paper reports an in-chip current distribution verification technology for power devices that takes into account the effect of layout parasitics. The proposed method enables verification of dynamic current distribution in a chip considering the influence of layout parasitics from the initial stage of device development by brushing up each element technology of TCAD, Spice mode... » read more

Gearing Up For Next-Gen Power Semis


After years in R&D, several vendors are moving closer to shipping power semiconductors and other products based on next-generation wide-bandgap technologies. These devices leverage the properties of new materials, such as aluminum nitride, diamond, and gallium oxide, and they are also utilized in different structures, such as vertical gallium-nitride power devices. But while many of thes... » read more

SiC MOSFETs In The Landscape Of Modern Power Devices


Over the years, low losses possible by high breakdown field made silicon carbide (SiC) MOSFETs extremely popular amongst engineers. At present, they are mostly used in areas where IGBTs (Insulated Gate Bipolar Transistors) have been the prevailing component of choice before. But which role do SiC MOSFETs play in today’s landscape of power devices? With SiC MOSFETs (Metal-Oxide-Semicond... » read more

Improving Reliability For GaN And SiC


Suppliers of gallium nitride (GaN) and silicon carbide (SiC) power devices are rolling out the next wave of products with some new and impressive specs. But before these devices are incorporated in systems, they must prove to be reliable. As with previous products, suppliers are quick to point out that the new devices are reliable, although there are some issues that can occasionally surface... » read more

MOCVD Vendors Eye New Apps


Several equipment makers are developing or ramping up new metalorganic chemical vapor deposition (MOCVD) systems in the market, hoping to capture the next wave of growth applications in the arena. Competition is fierce among the various MOCVD equipment suppliers in the market, namely Aixtron, AMEC and Veeco. In addition, MOCVD equipment suppliers are looking for renewed growth in 2020, but b... » read more

Power Semi Wars Begin


Several vendors are rolling out the next wave of power semiconductors based on gallium nitride (GaN) and silicon carbide (SiC), setting the stage for a showdown against traditional silicon-based devices in the market. Power semiconductors are specialized transistors that incorporate different and competitive technologies like GaN, SiC and silicon. Power semis operate as a switch in high-volt... » read more

Power/Performance Bits: June 25


Improving IGBTs Researchers at the University of Tokyo developed a power switching device that surpasses previous performance limits, showing that there may still be gains ahead for the silicon-based devices, which have been thought to be approaching their limits. The team's improved insulated gate bipolar transistor (IGBT) used a scaling approach, and simulations showed that downscaling pa... » read more

SiC Demand Growing Faster Than Supply


The silicon carbide (SiC) industry is in the midst of a major expansion campaign, but suppliers are struggling to meet potential demand for SiC power devices and wafers in the market. In just one example of the expansion efforts, Cree plans to invest up to $1 billion to increase its SiC fab and wafer capacities. As part of the plan, Cree is developing the world’s first 200mm (8-inch) SiC f... » read more

What Happened To GaN And SiC?


About five years ago, some chipmakers claimed that traditional silicon-based power MOSFETs had hit the wall, prompting the need for a new power transistor technology. At the time, some thought that two wide-bandgap technologies—gallium nitride (GaN) on silicon and silicon carbide (SiC) MOSFETs—would displace the ubiquitous power MOSFET. In addition, GaN and SiC were supposed to pose a t... » read more

← Older posts