The First Fully Configurable Cache-Coherent Interconnect Solution For SoCs


The last few decades have seen a massive growth in the number of CPU cores, computing clusters and other IP blocks in a SoC. This massive growth along with the need for complex chip integration has driven the need for sophisticated interconnects. SoC architects have employed a variety of methods from buses to crossbars to handcrafted NoCs with Lego-like blocks with varying degrees of success. T... » read more

An Architecture Synthesis Platform For Rapidly Evolving SoC Designs


Modern System-on-Chip (SoC) architects are faced with a number of serious challenges. First, the number of Semiconductor Intellectual Property (IP) blocks in SoC designs is growing continuously and increasing design complexity. With IP design reuse becoming more common, the mixing and matching of IP components is further compounding design complexity. Second, sophisticated SoC applications are ... » read more

5nm Fab Challenges


At a recent event, Intel presented a paper that generated sparks and fueled speculation regarding the future direction of the leading-edge IC industry. The company described a next-generation transistor called the nanowire FET, which is a finFET turned on its side with a gate wrapped around it. Intel’s nanowire FET, sometimes called a gate-all-around FET, is said to meet the device require... » read more

Interconnect Challenges Grow


It’s becoming apparent that traditional chip scaling is slowing down. The 16nm/14nm logic node took longer than expected to unfold. And the 10nm node and beyond could suffer the same fate. So what’s the main cause? It’s hard to pinpoint the problem, although many blame the issues on lithography. But what could eventually hold up the scaling train, and undo Moore’s Law, is arguably t... » read more

Patterning Interconnects At 10nm And Below


By Connie Duncan Chip manufacturers today build billions of transistors on a chip, delivering incredible computing power to consumers. What often gets overlooked is how hard it’s getting to create the many miles of ultra-thin copper wiring used to connect each of the transistors. Patterning these electrical pathways is becoming increasingly challenging as they grow denser and finer, and any ... » read more

Let’s Talk Open Source


Of late I have been hearing some rumblings about open source for the IoE. The sad part is that there is still talk about anything else. Even though the IoE remains a dream to many, the shrewd marketers already are scheming on how to make their product the one that leads that pack, and many see proprietary source code as a way to differentiate themselves. I can see that in any number of appli... » read more

Can Copper Revolutionize Interconnects Again?


Electromigration and resistivity present serious obstacles to interconnect scaling, as previously discussed. In a copper damascene process, grain growth is constrained by the narrow trenches into which copper is deposited. As the grain size approaches the mean free path of electrons in copper, electron scattering at sidewalls and grain boundaries increases and resistivity jumps. Meanwhile, incr... » read more

10nm Fab Challenges


After a promising start in 2015, the semiconductor equipment industry is currently experiencing a slight lull. The pause is expected to be short-lived, however. Suppliers of [getkc id="208" comment="3D NAND"] devices are expected to add more fab capacity later this year. And about the same time, foundries are expected to order the first wave of high-volume production tools for 10nm. At 10nm... » read more

Waiting For Next-Gen Metrology


Chipmakers continue to march down the various process nodes, but the industry will require new breakthroughs to extend IC scaling at 10nm and beyond. In fact, the industry will require innovations in at least two main areas—patterning and the [getkc id="36" comment="Interconnect"]. There are other areas of concern, but one technology is quickly rising near the top of the list—metrology.... » read more

Streamlining Interconnect Integration Accelerates Globally Distributed Design


As system on chip designs grow more complex, it becomes more and more difficult for chip companies to optimize the work of their distributed design teams. While each separate team has an area of expertise and sets their focus on a particular aspect of the SoC, the hard part comes in integrating these individual design efforts together. When something goes wrong and it doesn’t work, the compan... » read more

← Older posts Newer posts →