Moore’s Law Now Requires Advanced Packaging


Semiconductor Engineering sat down to discuss advanced packaging with Calvin Cheung, vice president of engineering at ASE; Walter Ng, vice president of business management at UMC; Ajay Lalwani, vice president of global manufacturing operations at eSilicon; Vic Kulkarni, vice president and chief strategist in the office of the CTO at ANSYS; and Tien Shiah, senior manager for memory at Samsung. W... » read more

More 2.5D/3D, Fan-Out Packages Ahead


A new wave of 2.5D/3D, fan-out and other advanced IC packages is expected to flood the market over the next year. The new packages are targeted to address many of the same and challenging applications in the market, such as multi-die integration, memory bandwidth issues and even chip scaling. But the new, advanced IC packages face some technical challenges. And cost remains an issue as advan... » read more

Where Advanced Packaging Makes Sense


Semiconductor Engineering sat down with Chenglin Liu, director of package engineering at Marvell; John Hunt, senior director of engineering at ASE; Eric Tosaya, senior director of package manufacturing at eSilicon; and Juan Rey, vice president of engineering for Calibre at Mentor, a Siemens Business. What follows are excerpts of that discussion, which was held in front of a live audience at MEP... » read more

What Will Intel Do Next?


The writing is on the wall for big processor makers. Apple, Amazon, Facebook and Google are developing their own processors. In addition, there are more than 30 startups developing various types of AI accelerators, as well as a field of embedded FPGA vendors, a couple of discrete FPGA makers, and a slew of soft processor cores. This certainly hasn't been lost on Intel. As the world's largest... » read more

Bridges Vs. Interposers


The number of technology options continue to grow for advanced packaging, including new and different ways to incorporate so-called silicon bridges in products. For some time, Intel has offered a silicon bridge technology called Embedded Multi-die Interconnect Bridge (EMIB), which makes use of a tiny piece of silicon with routing layers that connects one chip to another in an IC package. In ... » read more

The Case For Chiplets


Discussion about chiplets is growing as the cost of developing chips at 10/7nm and beyond passes well beyond the capabilities of many chipmakers. Estimates for developing 5nm chips (the equivalent 3nm for TSMC and Samsung) are well into the hundreds of millions of dollars just for the NRE costs alone. Masks costs will be in the double-digit millions of dollars even with EUV. And that's assum... » read more

Architecture, Materials And Software


AI, machine learning and autonomous vehicles will require massive improvements in performance, at the same power consumption level (or better), over today's chips. But it's obvious that the usual approach of shrinking features to improve power/performance isn't going to be sufficient. Scaling will certainly help, particularly on the logic side. More transistors are needed to process a huge i... » read more

The Race To Mass Customization


The number of advanced packaging options continues to rise. The choices now include different materials for interposers, at least a half-dozen fan-outs, not to mention hybrid fan-out/3D stacking, system-in-package, flip-chip and die-to-die bridges. There are several reasons for all of this activity. First, advanced packaging offers big improvements in performance and power that cannot be ac... » read more

Cheaper Packaging Options Ahead


Lower-cost packaging options and interconnects are either under development or just being commercialized, all of which could have a significant impact on the economics of advanced packaging. By far, the most cited reason why companies don't adopt advanced [getkc id="27" kc_name="packaging"] is cost. Currently, silicon [getkc id="204" kc_name="interposers"] add about $30 to the price of a med... » read more

Warp Speed Ahead


The computing world is on a tear, but not just in one direction. While battery-powered applications are focused on extending the time between charges or battery replacements, there is a whole separate and growing market for massive improvements in speed. Ultimately, this is where quantum computing will play a role, probably sometime in the late 2020/early 2030 timeframe, according to multipl... » read more

← Older posts Newer posts →