Shared-Write-Channel-Based Device for High-Density Spin-Orbit-Torque Magnetic Random-Access Memory


ABSTRACT "Spin-orbit-torque (SOT) devices are promising candidates for the future magnetic memory landscape, as they promise high endurance, low read disturbance, and low read error, in comparison with spin-transfer torque devices. However, SOT memories are area intensive due to the requirement for two access transistors per bit. Here, we report a multibit SOT cell that has a single write chan... » read more

Manufacturing Bits: April 28


Gate-all-around reliability The 2020 IEEE International Reliability Physics Symposium (IRPS) will kick off this week, this time as a virtual event. IRPS is a conference that focuses on the latest research in microelectronics reliability. The event starts off with keynotes from Infineon, Intel and Texas Instruments. IRPS also involves a multitude of papers and presentations. On the logi... » read more

Power/Performance Bits: Jan. 8


Ferrimagnetic memory Engineers at the National University of Singapore, Toyota Technological Institute, and Korea University propose a new type of spintronic memory that is 20 times more efficient and 10 times more stable than commercial ones. In spintronic devices, data is stored depending on up or down magnetic states. Current devices based on ferromagnets, however, suffer from a few issu... » read more

System Bits: Nov. 27


Silent, lightweight aircraft powered by ionic wind Instead of propellers or turbines, MIT researchers have built and flown the first-ever aircraft with no moving parts that is powered by an “ionic wind” — a silent but mighty flow of ions that is produced aboard the plane, and that generates enough thrust to propel the plane over a sustained, steady flight. [caption id="attachment_2414... » read more

Manufacturing Bits: Nov. 29


Supersonic kinetic spraying Low-cost flexible electronics could enable a new class of products, such as roll-up displays, wearable electronics, flexible solar cells and electronic skin. There is a major barrier to enable these technologies, however. The problem is to make flexible transparent conducting films that are scalable and economical. The University of Illinois at Chicago and Kor... » read more

Device Overlay Method For High-Volume Manufacturing


By Honggoo Lee, Sangjun Hana and Youngsik Kima of SK Hynix; Myoungsoo Kim, of the Department of Semiconductor System Engineering at Korea University; Hoyoung Heo, Sanghuck Jeon and DongSub Choi, KLA-Tencor Korea; and Jeremy Nabeth, Irina Brinster, Bill Pierson, and John C. Robinson of KLA-Tencor. Abstract Advancing technology nodes with smaller process margins require improved photolithogra... » read more

Power/Performance Bits: Sept. 29


Optical rectenna Engineers at the Georgia Institute of Technology demonstrated the first optical rectenna, a device that combines the functions of an antenna and a rectifier diode to convert light directly into DC current. Based on multiwall carbon nanotubes and tiny rectifiers fabricated onto them, the optical rectennas could provide a new technology for photodetectors that would operate... » read more

Power/Performance Bits: July 28


Synthesizing graphene on silicon Researchers from Korea University, in Seoul, developed an easy and microelectronics-compatible method to grow graphene and have successfully synthesized wafer-scale (four inches in diameter), high-quality, multi-layer graphene on silicon substrates. The method is based on an ion implantation technique, a process in which ions are accelerated under an electric... » read more

Newer posts →