Research Bits: Oct. 29


Micro-LED DUV maskless lithography Researchers from the University of Science and Technology of China, Anhui GaN Semiconductor, and Wuhan University developed a vertically integrated micro-LED array for deep ultraviolet (DUV) maskless photolithography. The team fabricated a DUV display integrated chip with 564 pixels-per-inch density that uses a three-dimensional vertically integrated devic... » read more

Brightening Intrinsically Dark Material


New research paper titled "Brightening of a dark monolayer semiconductor via strong light-matter coupling in a cavity," from researchers at Carl von Ossietzky University of Oldenburg (Germany), University of Iceland, the University of Würzburg (Germany), Friedrich Schiller University (Germany), Arizona State University (USA) and the National Institute for Materials Science in Tsukuba (Japan) a... » read more

MIT: Stackable AI Chip With Lego-style Design


New technical paper titled "Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence" from researchers at MIT, along with Harvard University, Tsinghua University, Zhejiang University, and others. Partial Abstract: "Here we report stackable hetero-integrated chips that use optoelectronic device arrays for chip-to-chip communication and neuromorphic... » read more

Power/Performance Bits: Dec. 28


Shrinking LEDs Researchers from King Abdullah University of Science and Technology (KAUST) are working to make LEDs smaller. Micrometer-scale light-emitting diodes (μLEDs) could be an ideal building block for future microLED displays, but devices based on nitride-based alloys used to achieve a broad color range become poor emitters of light when shrunk to micrometer scales. “The main ... » read more

Sputtered transparent electrodes for optoelectronic devices: Induced damage and mitigation strategies


Abstract: Summary "Transparent electrodes and metal contacts deposited by magnetron sputtering find applications in numerous state-of-the-art optoelectronic devices, such as solar cells and light-emitting diodes. However, the deposition of such thin films may damage underlying sensitive device layers due to plasma emission and particle impact. Inserting a buffer layer to shield against such da... » read more

Auto Displays: Bigger, Brighter, More Numerous


Displays are rapidly becoming more critical to the central brains in automobiles, accelerating the adoption and evolution of this technology to handle multiple types of audio, visual, and other data traffic coming into and flowing throughout the vehicle. These changes are having a broad impact on the entire design-through-manufacturing flow for display chip architectures. In the past, these ... » read more

Electrically connected spin-torque oscillators array for 2.4 GHz WiFi band transmission and energy harvesting


Researchers at the National University of Singapore and Tohoku University developed a device that uses spin-torque oscillators (STOs) to harvest energy from 2.4GHz Wi-Fi signals and wirelessly power an LED without need for a battery.   Technical Paper Link: Abstract "The mutual synchronization of spin-torque oscillators (STOs) is critical for communication, energy harvesting ... » read more

Speeding Up FPGA Development


Salaheddin Hetalani, field application engineer at OneSpin Solutions, talks about why it’s getting harder to design and debug FPGAs, how much design time can be saved through formal techniques, and why just relying on programmability isn’t the most efficient approach. » read more

MicroLEDs: The Next Revolution In Displays?


Flat-panel display technology is exploding on several fronts as more screens are required for more devices. But one type of display is generating an enormous amount of buzz in the market—microLEDs. Dozens of companies are working on micro-light emitting diodes (microLEDs), a technology that promises to provide better and brighter displays than current solutions in the market. Apple, Facebo... » read more

A Longer Life For LED Power Electronics


One of the greater challenges with LED lighting is the electronic driver’s robustness to normally occurring transients or power surges in the network. Many everyday examples have shown that the active electronics in the light sources find it hard to handle the effects in a use environment, in which incandescent bulbs and lamps with passive electronics have functioned fine for decades. A new p... » read more

← Older posts