Making Tradeoffs With AI/ML/DL


Machine learning, deep learning, and AI increasingly are being used in chip design, and they are being used to design chips that are optimized for ML/DL/AI. The challenge is understanding the tradeoffs on both sides, both of which are becoming increasingly complex and intertwined. On the design side, machine learning has been viewed as just another tool in the design team's toolbox. That's s... » read more

Pinpointing Timing Delays Can Improve Chip Reliability


Growing pressure to improve IC reliability in safety- and mission-critical applications is fueling demand for custom automated test pattern generation (ATPG) to detect small timing delays, and for chip telemetry circuits that can assess timing margin over a chip's lifetime. Knowing the timing margin in signal paths has become an essential component in that reliability. Timing relationships a... » read more

Data Analytics For The Chiplet Era


This article is based on a paper presented at SEMICON Japan 2022. Moore’s Law has provided the semiconductor industry’s marching orders for device advancement over the past five decades. Chipmakers were successful in continually finding ways to shrink the transistor, which enabled fitting more circuits into a smaller space while keeping costs down. Today, however, Moore’s Law is slowin... » read more

ML Automotive Chip Design Takes Off


Machine learning is increasingly being deployed across a wide swath of chips and electronics in automobiles, both for improving reliability of standard parts and for the creation of extremely complex AI chips used in increasingly autonomous applications. On the design side, the majority of EDA tools today rely on reinforcement learning, a machine learning subset of AI that teaches a machine ... » read more

Role Of IoT Software Expanding


IoT software is becoming much more sophisticated and complex as vendors seek to optimize it for specific applications, and far more essential for vendors looking to deliver devices on-time and on-budget across multiple market segments. That complexity varies widely across the IoT. For example, the sensor monitoring for a simple sprinkler system is far different than the preventive maintenanc... » read more

Issues And Challenges In Super-Resolution Object Detection And Recognition


If you want high performance AI inference, such as Super-Resolution Object Detection and Recognition, in your SoC the challenge is to find a solution that can meet your needs and constraints. You need inference IP that can run the model you want at high accuracy. You need inference IP that can run the model at the frame rate you want: higher frame rate = lower latency, more time for dec... » read more

From Data Center To End Device: AI/ML Inference With GDDR6


Created to support 3D gaming on consoles and PCs, GDDR packs performance that makes it an ideal solution for AI/ML inference. As inference migrates from the heart of the data center to the network edge, and ultimately to a broad range of AI-powered IoT devices, GDDR memory’s combination of high bandwidth, low latency, power efficiency and suitability for high-volume applications will be incre... » read more

ML-Based Third-Party IP Trust Verification Framework (U. of Florida, U. of Kansas)


A technical paper titled "Hardware IP Assurance against Trojan Attacks with Machine Learning and Post-processing" was published by researchers at University of Florida and University of Kansas. Abstract: "System-on-chip (SoC) developers increasingly rely on pre-verified hardware intellectual property (IP) blocks often acquired from untrusted third-party vendors. These IPs might contain hidd... » read more

AI Adoption Slow For Design Tools


A lot of excitement, and a fair amount of hype, surrounds what artificial intelligence (AI) can do for the EDA industry. But many challenges must be overcome before AI can start designing, verifying, and implementing chips for us. Should AI replace the algorithms in use today, or does it have a different role to play? At the end of the day, AI is a technique that has strengths and weaknesses... » read more

EDA Makes A Frenzied Push Into Machine Learning


Machine learning is becoming a competitive prerequisite for the EDA industry. Big chipmakers are endorsing and demanding it, and most EDA companies are deploying it for one or more steps in the design flow, with plans to add much more over time. In recent weeks, the three largest EDA vendors have made sweeping announcements about incorporating ML into their tools at their respective user eve... » read more

← Older posts Newer posts →