中文 English

Accelerating 5G Baseband With Adaptive SoCs: Part II


In my previous blog, we discussed 5G split architectures with focus on the widely adopted option 7-2 split. In this article, we will cover the implementation of the fronthaul and L1 Hi-PHY for 5G base stations. The 5G distributed unit (DU) can be implemented to process fronthaul data with O-RAN processing and partial offload for Hi-PHY processing which includes the LDPC encoder, LDPC decoder an... » read more

The Search For 5G mmWave Filters


Cellular telephone technology takes advantage of a large number of frequency bands to provide ever-increasing bandwidth for mobile use. Each of those bands needs a filter to keep its signals separate from other bands, but the filter technologies in current use for cellphones may not scale up to the full millimeter-wave (mmWave) range planned for 5G. “MmWave will happen,” said Mike Eddy, ... » read more

Accelerating 5G Baseband With Adaptive SoCs


5G new radio (NR) network specifications demand new architectures for radio and access networks. While the 5G NR architecture includes new spectrum and massive MIMO (mMIMO) antennas, corresponding access networks architecture must also evolve to implement the services defined by 5G, which include enhanced Mobile Broadband, Ultra Reliable Low Latency Communications and massive Machine Type Commu... » read more

How 5G Affects Test


David Hall, head of semiconductor marketing at National Instruments, talks with Semiconductor Engineering about architectural changes to infrastructure due to the rollout of 5G and how the move from macrocells to small cells is changing test requirements.         Subscribe to Semiconductor Engineering's YouTube Channel here » read more

Challenges Grow For 5G Packages And Modules


The shift to 5G wireless networks is driving a need for new IC packages and modules in smartphones and other systems, but this move is turning out to be harder than it looks. For one thing, the IC packages and RF modules for 5G phones are more complex and expensive than today's devices, and that gap will grow significantly in the second phase of 5G. In addition, 5G devices will require an as... » read more

Gaps In 5G Test


Add one more industry to the long list that analysts expect 5G technology to disrupt—test. While the initial versions of this wireless technology will be little more than a faster version of 4G, concern is growing about exactly how to test the second phase of this technology, which will be based upon millimeter wave. A number of fundamental problems need to be addressed. Among them: T... » read more

System Bits: March 19


Nanomesh material could find use in sustainable applications Imec collaborated with KU Leuven to develop a nanomesh material made of a 3D structure with nanowires. This material could prove to make batteries more energy-efficient, while also improving catalytic converters and fuel cells, and making hydrogen production easier. The research team is touting the 3D nanometer-scale metal grid st... » read more

MIMO And Phased-Array Antennas For 5G


Evolving communication systems are driving developments in the RF/microwave industry. The large umbrella of 5G focuses on supporting three main technologies: enhanced mobile broadband, which is the natural development of long-term evolution (LTE), massive machine-type communications, also known as the industrial internet of things (IIoT), and ultra-reliable, low-latency communications providing... » read more

Issues In Designing 5G Beamforming Antennas


As 5G networking inches closer to reality, one of the more stubborn problems also will be one of the smallest. Several issues have yet to be cracked with beamforming and massive MIMO antennas, which will make millimeter wave (mmWave) spectrum—a key ingredient in 5G networks—work on multiple devices and base-station locations. Millimeter wave is problematic yet promising. Between bands 30... » read more

Will 5G Deployment Lag in the U.S.?


China and other countries are creating “a 5G tsunami” that the U.S. will not be able to match unless it steps up its national investments in 5G cellular communications, Deloitte Consulting warns in a new report. The firm notes that China has outspent the U.S. on wireless communications infrastructure by $57 billion since 2015, constructing 350,000 new sites, compared with less than 2... » read more

← Older posts