Challenges In Ramping New Manufacturing Processes


Despite a slowdown for Moore’s Law, there are more new manufacturing processes rolling out faster than ever before. The challenge now is to decrease time to yield, which involves everything from TCAD and design technology co-optimization, to refinement of power, performance, area/cost, and process control and analytics. Srinivas Raghvendra, vice president of engineering at Synopsys, talks abo... » read more

Developing Energy-Efficient AI Accelerators For Intelligent Edge Computing And Data Centers


Artificial intelligence (AI) accelerators are deployed in data centers and at the edge to overcome conventional von Neumann bottlenecks by rapidly processing petabytes of information. Even as Moore’s law slows, AI accelerators continue to efficiently enable key applications that many of us increasingly rely on, from ChatGPT and advanced driver assistance systems (ADAS) to smart edge device... » read more

Battling Over Shrinking Physical Margin In Chips


Smaller process nodes, coupled with a continual quest to add more features into designs, are forcing chipmakers and systems companies to choose which design and manufacturing groups have access to a shrinking pool of technology margin. In the past margin largely was split between the foundries, which imposed highly restrictive design rules (RDRs) to compensate for uncertainties in new proces... » read more

The Impact Of ML On Chip Design


Node scaling and rising complexity are increasing the time it takes to get chips out the door. At the same time, design teams are not getting larger. What is needed is a way to automate the creative process, and to not have to start every design from scratch. This is where reinforcement learning fits in, with its ability to centralize and store “tribal knowledge. Thomas Andersen, vice preside... » read more

Combination of AI Techniques To Find The Best Ways to Place Transistors on Silicon Chips


A new technical paper titled "AutoDMP: Automated DREAMPlace-based Macro Placement" was published by researchers at NVIDIA. Abstract: "Macro placement is a critical very large-scale integration (VLSI) physical design problem that significantly impacts the design power-performance-area (PPA) metrics. This paper proposes AutoDMP, a methodology that leverages DREAMPlace, a GPU-accelerated place... » read more

Low-Power IC Design Without Compromise


In the process of creating ICs, the digital implementation stage is focused on meeting the performance, power, and area (PPA) targets defined for the design. Traditionally, when talking about PPA metrics, “performance” has been the primary focus, with power and area recovered where possible, after meeting timing. But as designs have moved to smaller, more advanced process nodes, and as s... » read more

How Low Can You Go? Pushing The Limits Of Transistors


Deep low voltage enablement of embedded memories and logic libraries to achieve extreme low power: Rising demand for cutting-edge mobile, IoT, and wearable devices, along with high compute demands for AI and 5G/6G communications, has driven the need for lower power systems-on-chip (SoCs). This is not only a concern for a device’s power consumption when active (dynamic power), but also when... » read more

Beyond Human Reach: Meeting Design Targets Faster With AI-Driven Optimization


The implementation flow for semiconductor devices is all about optimizing for power, performance, area (PPA), or some combination of these attributes. The history of this flow in electronic design automation (EDA) tools is all about adding more automation, tightening iterative loops, and reducing the number of iterations. The goal is converging to the PPA targets faster while using fewer resour... » read more

How Low Can You Go? Pushing The Limits Of Transistors


Rising demand for cutting-edge mobile, IoT, and wearable devices, along with high compute demands for AI and 5G/6G communications, has driven the need for lower power systems-on-chip (SoCs). This is not only a concern for a device’s power consumption when active (dynamic power), but also when the device is not active (leakage power). This highly competitive industry provides significant rewar... » read more

A Power-First Approach


It is becoming evidently clear that heat will be the limiter for the future of semiconductors. Already, large percentages of a chip are dark at any time, because if everything operated at the same time the amount of heat generated would exceed the ability of the chip and package to dissipate that energy. If we now start to contemplate stacking dies, where the ability to extract heat remains con... » read more

← Older posts Newer posts →