The Limits Of AI-Generated Models


In several recent stories, the subject of models has come up, and one recurrent theme is that AI may be able to help us generate models of a required abstraction. While this may be true in some cases, it is very dangerous in others. If we generalize, AI should be good for any model where the results are predominantly continuous, but discontinuities create problems. Unless those are found and... » read more

Anatomy Of A System Simulation


The semiconductor industry has greatly simplified analysis by consolidating around a small number of models and abstractions, but that capability is breaking down both at the implementation level and at the system level. Today, the biggest pressure is coming from the systems industry, where the electronic content is a small fraction of what must be integrated together. Systems companies tend... » read more

Memory And High-Speed Digital Design


As DRAM gets faster, timing constraints, jitter, and signal integrity become harder to control. The real challenge is to understand what can go wrong early in the design process, and that becomes more complex with each new version of memory and higher signal speeds. Stephen Slater, product manager for EDA products at Keysight, talks about how simulation can be applied to these issues, what to t... » read more

Maximizing Design Flexibility For Multi-Layered And Diffractive Optical Components


A broad range of optical devices use nanostructured layers and surfaces to manipulate beams of light through diffraction and interference. Example devices include diffraction gratings, metasurfaces, diffractive optical elements, and metalenses. While the purpose and function of these devices can differ, they offer similar challenges from the point of view of simulation. In this white paper, ... » read more

Simplifying Power Module Verification Using Compliance Checking


By Wilfried Wessel, Siemens EDA; Simon Liebetegger, University of Applied Sciences, Darmstadt; and Florian Bauer, Siemens EDA Current simulation and verification methods for power modules are time-consuming. Each domain has specific solutions based on finite elements analysis, computational fluid dynamics and solvers for electric circuits like SPICE. This article investigates if it is possib... » read more

Everyone’s A System Designer With Heterogeneous Integration


The move away from monolithic SoCs to heterogeneous chips and chiplets in a package is accelerating, setting in motion a broad shift in methodologies, collaborations, and design goals that are felt by engineers at every step of the flow, from design through manufacturing. Nearly every engineer is now working or touching some technology, process, or methodology that is new. And they are inter... » read more

The Federation Needs A Taxonomy


While putting together the story about federated simulation, it brought back memories of an earlier part of my career when I spent a lot of time looking at modeling abstractions and simulation frameworks. In the mid-1990s, the notions of re-using pre-designed blocks of IP started to become popular, but the fledgling industry was in disarray. Every IP block had a different set of deliverables... » read more

Industry Pressure Grows For Simulating Systems Of Systems


Most complex systems are designed in a top-down manner, but as the amount of electronic content in those systems increases, so does the pressure on the chip industry to provide high-level models and simulation capabilities. Those models either do not exist today, or they exist in isolation. No matter how capable a model or simulator, there never will be one that can do it all. In some cases,... » read more

Use Tcl To Save Signals More Efficiently In AMS Simulations


Saving signal waveforms during a simulation is one of the basic ways to check the simulation results. However, with large SoC designs, it’s not always practical to save all signals during simulation, and the simulation performance might also be impacted by the number of signals being saved. Therefore, a crucial part of the simulation setup is to specify the expected and essential signals to s... » read more

Jumping Over Thermal Cycles Accelerates Thermomechanical Fatigue Simulations


Although you are probably not aware of them, dozens of electronic control units (ECUs) — printed circuit boards (PCBs) in metal or plastic housings — exist in your car to control and monitor the operation and safety of your vehicle’s many control systems. These units must work for the lifetime of your car, during which time they are subjected to many heating and cooling cycles. The most o... » read more

← Older posts Newer posts →