The Great Quantum Computing Race


Quantum computing is heating up, as a growing number of entities race to benchmark, stabilize, and ultimately commercialize this technology. As of July 2021, a group from China appears to have taken the lead in terms of raw performance, but Google, IBM, Intel and other quantum computer developers aren’t far behind. All of that could change overnight, though. At this point, it's too early t... » read more

Power/Performance Bits: Feb. 16


Superconducting microprocessor Researchers at Yokohama National University created a superconducting processor with zero electrical resistance. Huge amounts of power are being used by computers today, and compared to the human brain, they are many orders of magnitude less efficient. Superconductors have been a popular approach to making computers more efficient, but this requires extreme co... » read more

System Bits: July 23


Superconductivity seen in trilayer graphene Stanford University and University of California at Berkeley researchers discovered signs of superconductivity in stacking three-layer sheets of graphene, they report. “It’s definitely an exciting development,” says Cory Dean, a physicist at Columbia University. Dean notes that bilayer graphene superconducts only when the atomic lattices of ... » read more

System Bits: Feb. 11


Modeling computer vision on human vision University of Michigan scientists used digital foveation technology to render images that are more comprehensible to machine vision systems, while also reducing energy consumption by 80%. The effect is achieved by manipulating a camera’s firmware. “It'll make new things and things that were infeasible before, practical,” Professor Robert Dick s... » read more

Do Superconducting Processors Really Need Cryogenic Memories?


Cryogenic, superconducting digital processors offer the promise of greatly reduced operating power for server-class computing systems. This is due to the exceptionally low energy per operation of Single Flux Quantum circuits built from Josephson junction devices operating at the temperature of 4 Kelvin. Unfortunately, no suitable same-temperature memory technology yet exists to complement these... » read more

Tech Talk: Cryogenic DRAM


Rambus Chief Scientist Craig Hampel talks with Semiconductor Engineering about quantum computing and the power/performance benefits of running DRAM at extremely low temperatures. https://youtu.be/3qu2mspJeM0 » read more

System Bits: Jan. 24


Modified carbon nanotubes used to track individual cells Carbon nanotubes come to the forefront of scientific research yet again, this time for serving as the most sensitive molecular sensing platforms available. MIT engineers believe they have designed sensors that, for the first time, can detect single protein molecules as they are secreted by cells or even a single cell. The sensors that... » read more

Not All Qubits Are Small


While diamond nitrogen-vacancy centers offer one attractive implementation of quantum qubits, many other systems have been proposed. In theory, at least, any system with clearly identifiable quantum states can serve the purpose. The challenge lies in finding a system in which those states can be manipulated and measured by external forces and can be fabricated in large enough numbers for practi... » read more

Power/Performance Bits: May 20


Visualizing complex electronic states While producing the first detailed visualization — down to the level of individual atoms — of exactly how a material called sodium manganese dioxide that has shown promise for use in electrodes in rechargeable batteries behaves during charging and discharging, a team of researchers led by MIT has explained an exotic molecular state that may help in und... » read more

Power/Performance Bits: Dec. 31


Approximate computing With the potential to double efficiency and reduce energy consumption, Purdue University and NEC Laboratories America researchers are developing computers capable of "approximate computing" to perform calculations good enough for certain tasks that don't require perfect accuracy. The need for approximate computing is driven by a fundamental shift in the nature of compu... » read more