Staying Within The Margins


Last March I wrote an article called Squeezing the Margins that’s about a design that used an adaptive clocking scheme to keep the performance of a system high while simultaneously keeping the temperature below a specified maximum. Last August we looked at Managing Voltage Variation and how an adaptive clocking scheme could be used to manage dynamic voltage drop to maximize system performance... » read more

What Data Center Chipmakers Can Learn From Automotive


Automotive OEMs are demanding their semiconductor suppliers achieve a nearly unmeasurable target of 10 defective parts per billion (DPPB). Whether this is realistic remains to be seen, but systems companies are looking to emulate that level of quality for their data center SoCs. Building to that quality level is more expensive up front, although ultimately it can save costs versus having to ... » read more

What’s At Stake In System Design?


What You Will Gain From This eBook: Power and Signal Integrity Insights into harmonic balancing and crosstalk analysis Learning about loop gain and transmission rates Examining the necessity of power-aware systems Electromagnetic Analysis Knowledge about the state of electromagnetics in wireless networks Insight into RADAR and LiDAR EM profiles Tips for bending, meshin... » read more

All-Solid-State Batteries: Substantial Deterioration of ASSBs Can Occur After High-Temperature Storage


New technical paper titled "Detrimental effect of high-temperature storage on sulfide-based all-solid-state batteries" was just published by researchers at Seoul National University, National Synchrotron Radiation Research Center (Taiwan), and Battery Material Lab at the Samsung Advanced Institute of Technology. According to this AIP article, "The team found storage as low as 70 degrees Cels... » read more

Thermal Management Challenges and Requirements of 3 types of Microelectronic Devices


New technical paper titled "A Review on Transient Thermal Management of Electronic Devices" from researchers at Indian Institute of Technology Bombay. Abstract "Much effort in the area of electronics thermal management has focused on developing cooling solutions that cater to steady-state operation. However, electronic devices are increasingly being used in applications involving time-varyi... » read more

DRAM Thermal Issues Reach Crisis Point


Within the DRAM world, thermal issues are at a crisis point. At 14nm and below, and in the most advanced packaging schemes, an entirely new metric may be needed to address the multiplier effect of how thermal density increasingly turns minor issues into major problems. A few overheated transistors may not greatly affect reliability, but the heat generated from a few billion transistors does.... » read more

A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses


Abstract "RowHammer is a circuit-level DRAM vulnerability where repeatedly accessing (i.e., hammering) a DRAM row can cause bit flips in physically nearby rows. The RowHammer vulnerability worsens as DRAM cell size and cell-to-cell spacing shrink. Recent studies demonstrate that modern DRAM chips, including chips previously marketed as RowHammer-safe, are even more vulnerable to RowHammer than... » read more

Multi-Physics At 5/3nm


Joao Geada, chief technologist at ANSYS, talks about why timing, process, voltage, and temperature no longer can be considered independently of each other at the most advanced nodes, and why it becomes more critical as designs shrink from 7nm to 5nm and eventually to 3nm. In addition, more chips are being customized, and more of those chips are part of broader systems that may involve an AI com... » read more

Power Issues Grow For Cloud Chips


Performance levels in traditional or hyperscale data centers are being limited by power and heat caused by an increasing number of processors, memory, disk and operating systems within servers. The problem is so complex and intertwined, though, that solving it requires a series of steps that hopefully add up to a significant reduction across a system. But at 7nm and below, predicting exactly... » read more

Temperature Reduction on a High-Power Thermal Demonstrator


High-power applications in microelectronic devices and systems is a crucial and severe issue that may cause elevated thermal and thermomechanical phenomena and finally lead the fabricated system to degradation, limitation of its performance, or even failure and destruction of its features. In specific applications, such as those found in the industry and the automotive sector, the power pro... » read more

← Older posts