Power/Performance Bits: April 25


Thermal diode Engineers at the University of Nebraska-Lincoln developed a nano-thermal-mechanical device, or thermal diode, which uses heat as an alternative energy source that would allow computing at ultra-high temperatures. "If you think about it, whatever you do with electricity you should (also) be able to do with heat, because they are similar in many ways," said Sidy Ndao, assistan... » read more

Power/Performance Bits: April 18


Cooling hotspots Engineers at Duke University and Intel developed a technology to cool hotspots in high-performance electronics. The new technology relies on a vapor chamber made of a super-hydrophobic floor with a sponge-like ceiling. When placed beneath operating electronics, moisture trapped in the ceiling vaporizes beneath emerging hotspots. The vapor escapes toward the floor, taking hea... » read more

Power/Performance Bits: April 11


High-efficiency silicon photodetector Electrical engineers at the University of California, Davis, and W&WSens Devices, Inc. built a new type of high-efficiency photodetector that could be monolithically integrated with silicon electronics. The new detector uses tapered holes in a silicon wafer to divert photons sideways, preserving the speed of thin-layer silicon and the efficiency o... » read more

Power/Performance Bits: April 4


Self-sustaining microbial fuel cell Researchers at Binghamton University developed the first micro-scale self-sustaining microbial fuel cell, which generates power through the symbiotic interactions of two types of bacteria. A mixed culture of phototrophic and heterotrophic bacteria were placed in a 90-microliter cell chamber, or about one-fifth the size of a teaspoon. Phototrophic bacter... » read more

Power/Performance Bits: March 28


Storing solar energy as carbon monoxide A team at Indiana University engineered a molecule that collects and stores solar energy without solar panels. The molecule uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide more efficiently than any other method of carbon reduction. Burning fuel such as carbon monoxide produces carbon dioxide and releases e... » read more

Power/Performance Bits: March 21


Tiny redox flow batteries for chips Researchers at ETH Zurich and IBM Research Zurich built a tiny redox flow battery capable of both powering and cooling stacks of chips. In a flow battery, an electrochemical reaction is used to produce electricity out of two liquid electrolytes, which are pumped to the battery cell from outside via a closed electrolyte loop. Such batteries are usually u... » read more

Power/Performance Bits: March 14


Magnetic storage on one atom Scientists at IBM Research created a single-atom magnet and were able to store one bit of data on it, making it the world's smallest magnetic storage device. Using electrical current, the researchers showed that two magnetic atoms could be written and read independently even when they were separated by just one nanometer. This tight spacing could, the team hop... » read more

Power/Performance Bits: March 7


Supercapacitor plants Scientists at Link√∂ping University in Sweden developed a method for transforming roses into supercapacitors that can be charged and discharged hundreds of times. The team created a solution that, when fed through the cut end of the stem, polymerizes inside the rose's vascular system with the plant's own biochemical response mechanism acting as catalyst, creating lon... » read more

Power/Performance Bits: Feb. 28


Power converter for IoT At the International Solid-State Circuits Conference, researchers from MIT presented a new power converter that is efficient at a wide range of currents, which could be a boon for IoT sensors that have variable power requirements. The device maintains its efficiency at currents ranging from 500 picoamps to 1 milliamp, a span that encompasses a 200,000-fold increase in... » read more

Power/Performance Bits: Feb. 21


Harvesting energy from multiple sources Researchers from the University of Oulu in Finland found a particular type of perovskite, KBNNO, has the right properties to extract energy from multiple sources simultaneously. While perovskites are particularly known for their use as solar cells, certain minerals in the perovskite family show piezoelectric and pyroelectric (harvesting energy from ... » read more

← Older posts