System Bits: Feb. 28

Software robots have fights lasting years According to University of Oxford and Alan Turing Institute researchers, editing bots on Wikipedia undo vandalism, enforce bans, check spelling, create links and import content automatically, whereas other non-editing bots mine data, identify data or identify copyright infringements — sometimes with unpredictable consequences. The team looked at h... » read more

System Bits: Jan. 10

Speeding up computing tasks by turning memory chips into processors In a development that could lead to data being processed in the same spot where it is stored, for much faster and thinner mobile devices and computers, a team of researchers from Nanyang Technological University, Singapore (NTU Singapore), Germany’s RWTH Aachen University, and interdisciplinary research center Forschungszent... » read more

System Bits: Jan. 3

Clues to high-temp superconductivity Offering clues about the microscopic origins of high-temperature superconductivity, physicists at Rice University’s Center for Quantum Materials (RCQM) have created a new iron-based material. The material is a formulation of iron, sodium, copper and arsenic created by Rice graduate student Yu Song in the laboratory of physicist Pengcheng Dai. The recip... » read more

Power/Performance Bits: Dec. 13

3D porous microsupercapacitors A research team from the King Abdullah University of Science and Technology (KAUST) developed an integrated microsupercapacitor targeted at self-powered system applications where the power source may be intermittent, such as sensors for wearables, security, and structural health monitoring. The key to the microsupercapacitors is vertically-scaled three-dimen... » read more

System Bits: Oct. 25

Scalable quantum computers In what they say is a significant step towards to the realization of a scalable quantum computer, researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits. The quantum socket is a wiring method that uses 3D based on spring-lo... » read more

System Bits: Oct. 18

First quantum computer bridge Quantum computing is closer than we think. For the first time on a single chip, Sandia National Laboratories and Harvard University researchers have shown all the components needed to create a quantum bridge to link quantum computers together by forcefully embedding two silicon atoms in a diamond matrix. Sandia researcher Ryan Camacho pointed out that small qua... » read more

System Bits: Aug. 30

Probing photon-electron interactions According to Rice University researchers, where light and matter intersect, the world illuminates; where they interact so strongly that they become one, they illuminate a world of new physics. Here, the team is closing in on a way to create a new condensed matter state in which all the electrons in a material act as one by manipulating them with light and a... » read more

Power/Performance Bits: July 12

Thin transistors Scientists with the U.S. Department of Energy's Lawrence Berkeley National Laboratory developed a way to chemically assemble transistors and circuits that are only a few atoms thick. The team controlled the synthesis of a transistor in which narrow channels were etched onto conducting graphene, with molybdenum disulfide (MoS2) seeded in the blank channels. Both of these m... » read more

Power/Performance Bits: May 10

Non-toxic thin-films A team at Australia's University of New South Wales achieved the world's highest efficiency using flexible solar cells that are non-toxic and cheap to make, with a record 7.6% efficiency in a 1cm2 area thin-film CZTS cell. Unlike its thin-film competitors, CZTS cells are made from abundant materials: copper, zinc, tin and sulphur, and has none of the toxicity problems... » read more

System Bits: April 26

Reconfigured Tesla coil electrifies materials In a development that could set a clear path toward scalable assembly of nanotubes from the bottom up, Rice University researchers have discovered that the strong force field emitted by a Tesla coil causes carbon nanotubes to self-assemble into long wires, a phenomenon they call Teslaphoresis. Rice chemist Paul Cherukuri led the team that develo... » read more

← Older posts