High-Fidelity CFD Mesh Generation With Voronoi Diagram


We are attuned to the fact that the law of nature, or nature’s rule, drives various scientific phenomena. Humans often replicate naturally occurring phenomena to achieve a desirable outcome, similar to how scientists mimic photosynthesis to generate energy. Comparable is the case with Voronoi geometries. These geometries are widely seen in beehives, the structure of sponges, rock fragmentati... » read more

Conquer Placement And Clock Tree Challenges In HPC Designs


High-performance computing (HPC) applications require IC designs with maximum performance. However, as process technology advances, achieving high performance has become increasingly challenging. Designers need digital implementation tools and methodologies that can solve the thorny issues in HPC designs, including placement and clock tree challenges. Placement and clock tree synthesis are c... » read more

Placement And CTS Techniques For High-Performance Computing Designs


This paper discusses the challenges of designing high-performance computing (HPC) integrated circuits (ICs) to achieve maximum performance. The design process for HPC ICs has become more complex with each new process technology, requiring new architectures and transistors. We highlight how the Siemens Aprisa digital implementation solution can solve placement and clock tree challenges in HPC de... » read more

Engineering Simulation Workloads And The Rise of the Cloud


Cloud service providers (CSPs) continue to improve the performance capabilities of their non-accelerated and accelerated compute instances, as well as augment their HPC infrastructure with domain-area expertise of targeted HPC workloads. Additionally, engineers, researchers, and scientists are becoming more comfortable with the types of workloads that can be run in the cloud within acceptable w... » read more

Research Bits: May 10


Growing 2D TMDs on chips Researchers from Massachusetts Institute of Technology (MIT), Oak Ridge National Laboratory, and Ericsson Research found a way to “grow” layers of 2D transition metal dichalcogenide (TMD) materials directly on top of a fully fabricated silicon chip, a technique they say could enable denser integrations. The researchers focused on molybdenum disulfide, which is f... » read more

Achieving Your Low Power Goals With Synopsys Ultra Low Leakage IO


The demand for low power design has intensified with shrinking geometries. At the same time, innovation in battery operated, handheld devices has increased the design complexity by adding more and more functionality. The focus is on power-optimized designs while maintaining low cost and reduced risk. Designers face these complex and contradictory challenges: developing products with the lowest ... » read more

Designing Crash-Proof Autonomous Vehicles


Autonomous vehicles keep crashing into things, even though ADAS technology promises to make driving safer because machines can think and react faster than human drivers. Humans rely on seeing and hearing to assess driving conditions. When drivers detect objects in front of the vehicle, the automatic reaction is to slam on the brakes or swerve to avoid them. Quite often drivers cannot react q... » read more

Research Bits: May 2


Reconfigurable FeHEMT Researchers at the University of Michigan created a reconfigurable ferroelectric transistor that could enable a single amplifier to do the work of multiple conventional amplifiers. “By realizing this new type of transistor, it opens up the possibility for integrating multifunctional devices, such as reconfigurable transistors, filters and resonators, on the same plat... » read more

Research Bits: April 25


Superconductor breakthrough — palladium Palladium may be a better superconductor than even nickelates (superconductors based on nickel), according to research by TU Wien working with Japanese universities. The research shows that palladates may be a ‘Goldilocks material’ in which it can continue its superconducting state at a higher temperature. "Palladium is directly one line below n... » read more

Research Bits: April 18


Simplified microwave photonic filter for 6G Researchers from Peking University developed a new chip-sized microwave photonic filter to separate communication signals from noise and suppress unwanted interference across the full radio frequency spectrum. “This new microwave filter chip has the potential to improve wireless communication, such as 6G, leading to faster internet connections, ... » read more

← Older posts Newer posts →