2.5D Architecture Answers AI Training’s Call for “All of the Above”


The impact of AI/ML grows daily impacting every industry and touching the lives of everyone. In marketing, healthcare, retail, transportation, manufacturing and more, AI/ML is a catalyst for great change. This rapid advance is powerfully illustrated by the growth in AI/ML training capabilities which have since 2012 grown by a factor of 10X every year. Today, AI/ML neural network training mod... » read more

Grading Chips For Longer Lifetimes


Figuring out how to grade chips is becoming much more difficult as these chips are used in applications where they are supposed to last for decades rather than just a couple of years. During manufacturing, semiconductors typically are run through a battery of tests involving performance and power, and then priced accordingly. But that is no longer a straightforward process for several reason... » read more

High-Performance Memory For AI And HPC


Frank Ferro, senior director of product management at Rambus, examines the current performance bottlenecks in high-performance computing, drilling down into power and performance for different memory options, and explains what are the best solutions for different applications and why. » read more

Chiplet Momentum Rising


The chiplet model is gaining momentum as an alternative to developing monolithic ASIC designs, which are becoming more complex and expensive at each node. Several companies and industry groups are rallying around the chiplet model, including AMD, Intel and TSMC. In addition, there is a new U.S. Department of Defense (DoD) initiative. The goal is to speed up time to market and reduce the cost... » read more

5/3nm Wars Begin


Several foundries are ramping up their new 5nm processes in the market, but now customers must decide whether to design their next chips around the current transistor type or move to a different one at 3nm and beyond. The decision involves the move to extend today’s finFETs to 3nm, or to implement a new technology called gate-all-around FETs (GAA FETs) at 3nm or 2nm. An evolutionary step f... » read more

Making 3D Structures And Packages More Reliable


The move to smaller vertical structures and complex packaging schemes is straining existing testing approaches, particularly in heterogeneous combinations on a single chip and in multi-die packages. The complexity of these devices has exploded with the slowdown in scaling, as chipmakers turn to architectural solutions and new transistor structures rather than just relying on shrinking featur... » read more

What Worked, What Didn’t In 2019


2019 has been a tough year for semiconductor companies from a revenue standpoint, especially for memory companies. On the other hand, the EDA industry has seen another robust growth year. A significant portion of this disparity can be attributed to the number of emerging technology areas for semiconductors, none of which has reached volume production yet. Some markets continue to struggle, a... » read more

New Packaging Roadmap


Historically, the electronics industry has drawn sharp distinctions between the integrated circuit chip, the package that protects it from the environment, and the board that connects it to other devices in a complete system. The circuit and systems worlds have been largely isolated from each other, using different tools, different processes, and different metrics for success. While integrated ... » read more

What’s Next For High Bandwidth Memory


A surge in data is driving the need for new IC package types with more and faster memory in high-end systems. But there are a multitude of challenges on the memory, packaging and other fronts. In systems, for example, data moves back and forth between the processor and DRAM, which is the main memory for most chips. But at times this exchange causes latency and power consumption, sometimes re... » read more

Designing In 4D


The chip design world is no longer flat or static, and increasingly it's no longer standardized. Until 16/14nm, most design engineers viewed the world in two dimensions. Circuits were laid out along x and y axes, and everything was packed in between those two borders. The biggest problems were that nothing printed as neatly as the blueprint suggested, and current leaked out of two-dimension... » read more

← Older posts Newer posts →