Nudging 2D semiconductors forward


The buzz about 2D materials replacing silicon appears to be premature. While 2D semiconductors have emerged as potential successors, it's not clear when or even if that will happen. As Iuliana Radu, Imec's director of quantum and exploratory computing observed, the “end” of silicon has been predicted many times before. It is not clear when 2D semiconductors will need to be ready. In fac... » read more

Intelligent Agents for the Optimization of Atomic Layer Deposition


"Atomic layer deposition (ALD) is a highly controllable thin film synthesis approach with applications in computing, energy, and separations. The flexibility of ALD means that it can access a massive chemical catalogue; however, this chemical and process diversity results in significant challenges in determining processing parameters that result in stable and uniform film growth with minimal pr... » read more

Manufacturing Bits: June 29


Speeding up ALD with AI The U.S. Department of Energy’s (DOE) Argonne National Laboratory has developed various ways to make atomic layer deposition (ALD) more efficient by using artificial intelligence (AI). ALD is a deposition technique that deposits materials one layer at a time on chips. For years, ALD has been used for the production of DRAMs, logic devices and other products. In ... » read more

ALD Coatings For Critical Chamber Components


With each transition to a new technology node, fab requirements for metal and particle contamination become more stringent, posing challenges for existing coating methods such as anodization or plasma spray that may not provide complete protection against contamination especially on critical chamber components with complex geometry. SEMI spoke with Beneq business executive Sami Sneck about... » read more

Novel Etch Technologies Utilizing Atomic Layer Process For Advanced Patterning


We demonstrated a high selective and anisotropic plasma etch of Si3N4 and SiC. The demonstrated process consists of a sequence of ion modification and chemical dry removal steps. The Si3N4 etch with H ion modification showed a high selectivity to SiO2 and SiC films. In addition, we have developed selective etch of SiC with N ion modification. On the other hand, in the patterning etch processes,... » read more

Advanced Materials For High-Temperature Process Integration


From the last several lithography nodes, in the 14 to 10nm range, to the latest nodes, in the 7 to 5nm range, the requirements for patterning and image transfer materials have increased dramatically. One of the key pinch points is the tradeoff between planarization and the high-temperature stability required from carbon films used in patterning and post-patterning process integration. Patter... » read more

Atomic Layer Etch Expands To New Markets


The semiconductor industry is developing the next wave of applications for atomic layer etch (ALE), hoping to get a foothold in some new and emerging markets. ALE, a next-generation etch technology that removes materials at the atomic scale, is one of several tools used to process advanced devices in a fab. ALE moved into production for select applications around 2016, although the technolog... » read more

Challenges In Stacking, Shrinking And Inspecting Next-Gen Chips


Rick Gottscho, CTO of Lam Research, sat down with Semiconductor Engineering to discuss memory and equipment scaling, new market demands, and changes in manufacturing being driven by cost, new technologies, and the application of machine learning. What follows are excerpts of that conversation. SE: We have a lot of different memory technologies coming to market. What's the impact of that? ... » read more

Scaling CMOS Image Sensors


After a period of record growth, the CMOS image sensor market is beginning to face some new and unforeseen challenges. CMOS image sensors provide the camera functions in smartphones and other products, but now they are facing scaling and related manufacturing issues in the fab. And like all chip products, image sensors are seeing slower growth amid the coronavirus outbreak. Manufactured a... » read more

Making Chips At 3nm And Beyond


Select foundries are beginning to ramp up their new 5nm processes with 3nm in R&D. The big question is what comes after that. Work is well underway for the 2nm node and beyond, but there are numerous challenges as well as some uncertainty on the horizon. There already are signs that the foundries have pushed out their 3nm production schedules by a few months due to various technical issu... » read more

← Older posts Newer posts →