Piecing Together Chiplets


Several companies are implementing the chiplet model as a means to develop next-generation 3D-like chip designs, but this methodology still has a long way to go before it becomes mainstream for the rest of the industry. It takes several pieces to bring up a 3D chip design using the chiplet model. A few large players have the pieces, though most are proprietary. Others are missing some key co... » read more

What Does It Take To Build A Successful Multi-Chip Module Factory?


When it comes to multi-chip module (MCM) manufacturing, fan-out wafer-level and fan-out panel-level packaging have received a lot of coverage recently. Every week, it seems like there is an announcement about “Company XYZ” moving their products into the fan-out wafer-level packaging (FOWLP) or fan-out panel-level packaging (FOPLP) space. But these moves come with challenges that didn’t ex... » read more

Fan-Out Packaging Options Grow


Chipmakers, OSATs and R&D organizations are developing the next wave of fan-out packages for a range of applications, but sorting out the new options and finding the right solution is proving to be a challenge. Fan-out is a way to assemble one or more dies in an advanced package, enabling chips with better performance and more I/Os for applications like computing, IoT, networking and sma... » read more

Advanced Packaging’s Next Wave


Packaging houses are readying the next wave of advanced packages, enabling new system-level chip designs for a range of applications. These advanced packages involve a range of technologies, such as 2.5D/3D, chiplets, fan-out and system-in-package (SiP). Each of these, in turn, offers an array of options for assembling and integrating complex dies in an advanced package, providing chip custo... » read more

Making Chip Packaging More Reliable


Packaging houses are readying the next wave of IC packages, but these products must prove to be reliable before they are incorporated into systems. These packages involve several advanced technologies, such as 2.5D/3D, chiplets and fan-out, but vendors also are working on new versions of more mature package types, like wirebond and leadframe technologies. As with previous products, packaging... » read more

What Goes Wrong In Advanced Packages


Advanced packaging may be the best way forward for massive improvements in performance, lower power, and different form factors, but it adds a whole new set of issues that were much better understood when Moore's Law and the ITRS roadmap created a semi-standardized path forward for the chip industry. Different advanced packaging options — system-in-package, fan-outs, 2.5D, 3D-IC — have a... » read more

Surviving The Three Phases Of High Density Advanced Packaging Design


The growth of High Density Advanced Packages (HDAP) such as FOWLP, CoWoS, and WoW is triggering a convergence of the traditional IC design and IC package-design worlds. To handle these various substrate scenarios, process transformation must occur. This paper discusses the three phases of HDAP design and provides tips on how to survive their challenges. To read more, click here. » read more

WLFO For High-Performance Low-Cost Packaging Of RFMEMS-CMOS


Navigating the trade-offs between performance, size, cost and reliability can be a challenge when considering integrated circuit (IC) packaging and the end-application. The integration of micro-electromechanical systems (MEMS), either monolithic or heterogeneous, introduces yet another level of complexity that has only recently been a major focus of multi-device packaging. Wafer-level fanout (W... » read more

Variation Threat In Advanced Nodes, Packages Grows


Variation is becoming a much bigger and more complex problem for chipmakers as they push to the next process nodes or into increasingly dense advanced packages, raising concerns about the functionality and reliability of individual devices, and even entire systems. In the past, almost all concerns about variation focused on the manufacturing process. What printed on a piece of silicon didn't... » read more

New RDL-First PoP Fan-Out Wafer-Level Package Process With Chip-to-Wafer Bonding Technology


Fan-Out Wafer-Level Interposer Package-on Package (PoP) design has many advantages for mobile applications such as low power consumption, short signal path, small form factor, and heterogeneous integration for multifunctions. In addition, it can be applied in various package platforms, including PoP, System-in-Package (SiP), and Chip Scale Package (CSP). These advantages come from advanced inte... » read more

← Older posts Newer posts →