中文 English

Creating Airgaps To Reduce Parasitic Capacitance In FEOL


Reducing the parasitic capacitance between the gate metal and the source/drain contact of a transistor can decrease device switching delays. One way to reduce parasitic capacitance is to reduce the effective dielectric constant of the material layers between the gate and source/drain. This can be done by creating airgaps in the dielectric material at that location. This type of work has been do... » read more

On-chip 2D/3D Photonics Integration Solution Using Deposited Polycrystalline Silicon for Optical Interconnects Applications


A new technical paper titled "Polycrystalline silicon PhC cavities for CMOS on-chip integration" was published by researchers at Tyndall National Institute, Munster Technological University, and Université Grenoble Alpes, CEA, LETI. "In this work, we present an on-chip 2D and 3D photonics integration solution compatible with Front End of Line integration (FEOL) using deposited polycrystalli... » read more

New Materials Open Door To New Devices


Integrating 2D materials into conventional semiconductor manufacturing processes may be one of the more radical changes in the chip industry’s history. While there is pain and suffering associated with the introduction of any new materials in semiconductor manufacturing, transition metal dichalcogenides (TMDs) support a variety of new device concepts, including BEOL transistors and single-... » read more

Angstrom-Level Measurements With AFMs


Competition is heating up in the atomic force microscopy (AFM) market, where several vendors are shipping new AFM systems that address various metrology challenges in packaging, semiconductors and other fields. AFM, a small but growing field that has been under the radar, involves a standalone system that provides surface measurements on structures down to the angstrom level. (1 angstrom = 0... » read more

Breaking The 2nm Barrier


Chipmakers continue to make advancements with transistor technologies at the latest process nodes, but the interconnects within these structures are struggling to keep pace. The chip industry is working on several technologies to solve the interconnect bottleneck, but many of those solutions are still in R&D and may not appear for some time — possibly not until 2nm, which is expected t... » read more

The Race To Much More Advanced Packaging


Momentum is building for copper hybrid bonding, a technology that could pave the way toward next-generation 2.5D and 3D packages. Foundries, equipment vendors, R&D organizations and others are developing copper hybrid bonding, which is a process that stacks and bonds dies using copper-to-copper interconnects in advanced packages. Still in R&D, hybrid bonding for packaging provides mo... » read more

Yield And Reliability Challenges At 7nm And Below


Layout Design Rules have been scaled very aggressively to enable the 7nm technology node without EUV. As a result, achieving acceptable performance and yield in High Volume Manufacturing (HVM) has become an extremely challenging task. Systematic yield and parametric variabilities have become quite significant. Moreover, due to overlay tolerance requirements and diminishing process windows, reli... » read more

Making Chips At 3nm And Beyond


Select foundries are beginning to ramp up their new 5nm processes with 3nm in R&D. The big question is what comes after that. Work is well underway for the 2nm node and beyond, but there are numerous challenges as well as some uncertainty on the horizon. There already are signs that the foundries have pushed out their 3nm production schedules by a few months due to various technical issu... » read more

Challenges Grow For Finding Chip Defects


Several equipment makers are developing or ramping up a new class of wafer inspection systems that address the challenges in finding defects in advanced chips. At each node, the feature sizes of the chips are becoming smaller, while the defects are harder to find. Defects are unwanted deviations in chips, which impact yield and performance. The new inspection systems promise to address the c... » read more

Test Chips Play Larger Role At Advanced Nodes


Test chips are becoming more widespread and more complex at advanced process nodes as design teams utilize early silicon to diagnose problems prior to production. But this approach also is spurring questions about whether this approach is viable at 7nm and 5nm, due to the rising cost of prototyping advanced technology, such as mask tooling and wafer costs. Semiconductor designers have long b... » read more

← Older posts