Hyperconnectivity, Hyperscale Computing, And Moving Edges


As described in “The Four Pillars of Hyperscale Computing” last year, the four core components that development teams consider for data centers are computing, storage, memory, and networking. Over the previous decade, requirements for programmability have fundamentally changed data centers. Just over a decade ago, in 2010, virtual machines would compute user workloads on CPU-centric archite... » read more

Addressing IC Hyperconvergence Design Challenges


Recently in an article titled “A Renaissance for Semiconductors,” my colleague Michael Sanie highlighted some of the trends that are driving next-generation product development. He detailed how designs targeting new applications are innovating through a combination of advanced process node technologies and heterogeneous integration of stacked die/3D/2.5D systems. Additionally, advanced vert... » read more

Know Your Own Power, Early And Accurately


By Taruna Reddy and Vin Liao Chip designers have always had to balance timing and area. Everyone wants a design as fast as possible and as compact as possible, but these two goals are usually in conflict. For the last couple of decades, minimal power consumption has been a third goal, often of equal importance. Some of the biggest drivers for the semiconductor industry are battery operated p... » read more

DFT For SoCs Is Last, First, And Everywhere In Between


Back in the dawn of time, IC test was the last task in the design flow. First, you designed the chip and then you wrote the functional test program to verify it performed as expected after manufacturing. Without much effort, some portion of the functional test program was often reused as the manufacturing test to determine that the silicon was defect-free. Fast forward to today and things ha... » read more

Fast, Low-Power Inferencing


Power and performance are often thought of as opposing goals, opposite sides of the same coin if you will. A system can be run really fast, but it will burn a lot of power. Ease up on the accelerator and power consumption goes down, but so does performance. Optimizing for both power and performance is challenging. Inferencing algorithms for Convolutional Neural Networks (CNN) are compute int... » read more

Low Power Still Leads, But Energy Emerges As Future Focus


In 2021 and beyond, chips used in smartphones, digital appliances, and nearly all major applications will need to go on a diet. As the amount of data being generated continues to swell, more processors are being added everywhere to sift through that data to determine what's useful, what isn't, and how to distribute it. All of that uses power, and not all of it is being done as efficiently as... » read more

Impact Of Instruction Memory On Processor PPA


The area of any part of a design contributes both to the silicon cost and to the power consumption. A simplistic following of the “A” in a processor IP vendor’s PPA numbers can be misleading. A processor is never in isolation but is part of a subsystem additionally including instruction memory, data memory, and peripherals. In most cases, instruction memory will be dominant and the proc... » read more

Brute-Force Analysis Not Keeping Up With IC Complexity


Much of the current design and verification flow was built on brute force analysis, a simple and direct approach. But that approach rarely scales, and as designs become larger and the number of interdependencies increases, ensuring the design always operates within spec is becoming a monumental task. Unless design teams want to keep adding increasing amounts of margin, they have to locate th... » read more

Arm Goes For Performance


At the recent Linley Processor Conference, Arm presented two processors. This was regarded as so confidential that the original pre-conference version of the presentations didn't contain the Arm one, even though that pdf was only put online about an hour before. But most of the outline of what they presented they already talked about in May, a few months ago. I said recently that this seem... » read more

Optimizing For Energy In Physical Design


Energy is a precious resource, which should not be wasted. Energy drives economies and sustains societies. Predictions show that the energy of electronics may soon consume 20% to 33% of the global energy supply, as it is highlighted in this blog post about "Design and Manufacturing in 2030" from Greg Yeric, fellow at Arm. Energy efficiency is such an important global issue that it is ... » read more

← Older posts Newer posts →