Lower Resistance Protects Against Failure In IC Design


By Fady Fouad, Esraa Swillam, and Jeff Wilson When you’re fighting off a threat, you typically want all the resistance you can muster. In IC design, on the other hand, minimizing resistance is crucial to success in power structure design. As metals get narrower with technology node advances, resistance levels rise, and voltage drop (IR) and electromigration (EM) issues grow, both in number... » read more

Analog Simulation At 7/5/3nm


Hany Elhak, group director of product management at Cadence, talks with Semiconductor Engineering about analog circuit simulation at advanced nodes, why process variation is an increasing problem, the impact of parasitics and finFET stacking, and what happens when gate-all-around FETs are added into the chip. » read more

Speed Up P2P Resistance Debugging With Selective Highlighting


Point-to-point (P2P) resistance simulation calculates the effective parasitic resistance from one or more specified points (sources) to another set of points (sinks) on an integrated circuit (IC) layout. The results of these simulations are a key component in the verification of the robustness and reliability of IC layout interconnect—designers must have this information to accurately perform... » read more

Connecting Wafer-Level Parasitic Extraction And Netlisting


The semiconductor technology simulation world is typically divided into device-level TCAD (technology CAD) and circuit-level compact modeling. Larger EDA companies provide high-level design simulation tools that perform LVS (layout vs. schematic), DRC (design rule checking), and many other software solutions that facilitate the entire design process at the most advanced technology nodes. In thi... » read more

The Growing Challenge Of Thermal Guard-Banding


Guard-banding for heat is becoming more difficult as chips are used across a variety of new and existing applications, forcing chipmakers to architect their way through increasingly complex interactions. Chips are designed to operate at certain temperatures, and it is common practice to develop designs with some margin to ensure correct functionality and performance throughout the operat... » read more

Boosting Analog Reliability


Aveek Sarkar, vice president of Synopsys’ Custom Compiler Group, talks about challenges with complex design rules, rigid design methodologies, and the gap between pre-layout and post-layout simulation at finFET nodes. https://youtu.be/JRYlYJ31LLw » read more

Accurate, fast P2P resistance extraction for unconventional geometries


Accurately measuring interconnect resistance is fundamental to ensuring circuit reliability. Applications that use unconventional metal structures and multiple probe points require enhanced fracturing techniques to extract P2P resistance quickly and accurately. To read more, click here. » read more

Electromagnetic Crosstalk Considerations In Low Power Designs


By Magdy Abadir, Padelis Papadopoulos, and Yehea Ismail
 Power consumption continues to be a critical design metric in high-performance mobile electronics. In order to meet the aggressive power budget targets, chips today need to operate at extremely low power levels, which increases the critical signals’ susceptibility to electromagnetic (EM) crosstalk effects. Because a low-power So... » read more

Tech Talk: 5/3nm Parasitics


Ralph Iverson, principal R&D engineer at Synopsys, talks about parasitic extraction at 5/3nm and what to expect with new materials and gate structures such as gate-all-around FETs and vertical nanowire FETs. https://youtu.be/24C6byQBkuI » read more

Pushing Performance Limits


Trying to squeeze the last bit of performance out of a chip sounds like a good idea, but it increases risk and cost, extends development time, reduced yield, and it may even limit the environments in which the chip can operate. And yet, given the amount of margin added at every step of the development process, it seems obvious that plenty of improvements could be made. "Every design can be o... » read more

← Older posts