Ultra-Low Power CiM Design For Practical Edge Scenarios


A technical paper titled “Low Power and Temperature-Resilient Compute-In-Memory Based on Subthreshold-FeFET” was published by researchers at Zhejiang University, University of Notre Dame, Technical University of Munich, Munich Institute of Robotics and Machine Intelligence, and the Laboratory of Collaborative Sensing and Autonomous Unmanned Systems of Zhejiang Province.


“Compute-in-memory (CiM) is a promising solution for addressing the challenges of artificial intelligence (AI) and the Internet of Things (IoT) hardware such as ‘memory wall’ issue. Specifically, CiM employing nonvolatile memory (NVM) devices in a crossbar structure can efficiently accelerate multiply-accumulation (MAC) computation, a crucial operator in neural networks among various AI models. Low power CiM designs are thus highly desired for further energy efficiency optimization on AI models. Ferroelectric FET (FeFET), an emerging device, is attractive for building ultra-low power CiM array due to CMOS compatibility, high ION /IOF  ratio, etc. Recent studies have explored FeFET based CiM designs that achieve low power consumption. Nevertheless, subthreshold-operated FeFETs, where the operating voltages are scaled down to the subthreshold region to reduce array power consumption, are particularly vulnerable to temperature drift, leading to accuracy degradation. To address this challenge, we propose a temperature-resilient 2T-1FeFET CiM design that performs MAC operations reliably at subthreahold region from 0 to 85 Celsius, while consuming ultra-low power. Benchmarked against the VGG neural network architecture running the CIFAR-10 dataset, the proposed 2T-1FeFET CiM design achieves 89.45% CIFAR-10 test accuracy. Compared to previous FeFET based CiM designs, it exhibits immunity to temperature drift at an 8-bit wordlength scale, and achieves better energy efficiency with 2866 TOPS/W.”

Find the technical paper here. Published January 2024 (preprint).

Zhou, Yifei, Xuchu Huang, Jianyi Yang, Kai Ni, Hussam Amrouch, Cheng Zhuo, and Xunxhao Yin. “Low Power and Temperature-Resilient Compute-In-Memory Based on Subthreshold-FeFET.” arXiv preprint arXiv:2312.17442 (2023).

Related Reading
Increasing AI Energy Efficiency With Compute In Memory
How to process zettascale workloads and stay within a fixed power budget.
Modeling Compute In Memory With Biological Efficiency
Generative AI forces chipmakers to use compute resources more intelligently.

Leave a Reply

(Note: This name will be displayed publicly)