Automotive Semiconductor Test

How to increase the reliability and manufacturing test quality of automotive parts.


We are witnessing the gradual transition of the automobile from a simple means of transportation to a mobile electronic hub. The amount of electronic content in passenger cars continues to grow rapidly. Recent reports indicate that electronics now contribute about 40% of the total costs of a traditional, internal combustion engine car, and this jumps as high as 75% for the growing number of electric and hybrid-electric vehicles. The amount of electronics will only continue to grow as manufacturers continue to add new advanced safety features, greater information and entertainment services and improvements in energy efficiency. Safety features are experiencing particularly large growth and encompass items such as collision avoidance, lane change assistance and automatic parking. The industry’s move towards fully autonomous vehicles promises to even further increase the number of these safety features.

The electronic components behind these safety features, as well as any other electronics involved in the operation of the vehicle, need to meet extremely high quality and reliability metrics. To ensure consistency across the large and growing number of automotive suppliers, an international automotive components safety standard was established. Called ISO 26262, the standard defines the requirements for building safe automotive equipment and is being rapidly adopted by automotive manufacturers and suppliers worldwide. The standard is comprehensive and covers all aspects of the hardware and software lifecycle from design through testing and in-field operation.

The Mentor Tessent product family offers several solutions for helping to address the quality and reliability metrics mandated by the standard. Solutions exist for increasing both the manufacturing test quality as well as the long term reliability of automotive parts. To read more, click here.