Four Foundries Back MRAM


Four major foundries plan to offer MRAM as an embedded memory solution by this year or next, setting the stage for what finally could prove to be a game-changer for this next-generation memory technology. GlobalFoundries, Samsung, TSMC and UMC plan to start offering spin-transfer torque magnetoresistive RAM (ST-MRAM or STT-MRAM) as an alternative or a replacement to NOR flash, possibly start... » read more

Foundries Accelerate Auto Efforts


Foundries are ramping up their efforts in automotive chip production in preparation for a surge in semiconductors used in assisted and autonomous driving. All of the major foundry vendors are scrambling to assemble the pieces and expand their process portfolios for automotive customers. The foundries are seeing a growing demand from automotive IC customers amid the push toward advanced drive... » read more

What Does An IoT Chip Look Like?


By Ed Sperling and Jeff Dorsch Internet of Things chip design sounds like a simple topic on the face of it. Look deeper, though, and it becomes clear there is no single IoT, and certainly no type of chip that will work across the ever-expanding number of applications and markets that collectively make up the IoT. Included under this umbrella term are sensors, various types of processors, ... » read more

Inside FD-SOI And Scaling


Gary Patton, chief technology officer at [getentity id="22819" comment="GlobalFoundries"], sat down with Semiconductor Engineering to discuss FD-SOI, IC scaling, process technology and other topics. What follows are excerpts of that conversation. SE: In logic, GlobalFoundries is shipping 14nm finFETs with 7nm in the works. The company is also readying 22nm FD-SOI technology with 12nm FD-SOI ... » read more

Enabling Magnetic Tunnel Junctions Array Processing For Embedded STT MRAM


The semiconductor industry is entering a new era of next-generation memory technologies, with several major inflections taking shape. Among these is the emergence of Magnetic RAM (MRAM). Over several posts, I’ll provide background on what is driving the adoption of MRAM, highlight some of the initial challenges and discuss progress on making STT MRAM commerically viable. Today, a typical m... » read more

Get Ready For Nanotube RAM


The memory market is going in several different directions at once. On one front, the traditional memory types, such DRAM and flash, remain the workhorse technologies in systems despite undergoing some changes in the business. Then, several vendors are readying the next-generation memory types in the market. As part of an ongoing series, Semiconductor Engineering will explore where the new a... » read more

What’s Next For NOR Flash?


The flash memory market is the tale two of cities. Today, NAND and NOR are the two main flash memory types. Over the years, the NAND flash market has exploded. Targeted for data storage, NAND flash has moved into flash cards, solid-state storage drives (SSDs) and other products. The excitement for NAND continues to mount, as the technology is moving from planar to a 3D structure. In fact, 3D... » read more

New Memories And Architectures Ahead


Memory dominates many SoCs, and it is rare to hear that a design contains too much memory. However, memories consume a significant percentage of system power, and while this may not be a critical problem for many systems, it is a bigger issue for Internet of Things ([getkc id="76" kc_name="IoT"]) edge devices where total energy consumption is very important. Memory demands are changing in al... » read more

New Embedded Memories Ahead


The embedded memory market is beginning to heat up, fueled by a new wave of microcontrollers (MCUs) and related chips that will likely require new and more capable nonvolatile memory types. The industry is moving on several different fronts in the embedded memory landscape. On one front, traditional solutions are advancing. On another front, several vendors are positioning the next-generatio... » read more

Performance Increasingly Tied To I/O


Speeding up input and output is becoming a cornerstone for improving performance and lowering power in SoCs and ASICs, particularly as scaling processors and adding more cores produce diminishing returns. While processors of all types continue to improve, the rate of improvement is slowing at each new node. Obtaining the expected 30% to 50% boost in performance and lower power no longer can ... » read more

← Older posts