The Limits Of The Lifecycle


In the first article in my series on sustainability, I cited one estimate that attributed most of the electricity consumed by an integrated circuit to manufacturing, not use. Other analyses, however, come to exactly the opposite conclusion, with above 90% of lifetime energy consumption accounted for by the use phase. How can that be? The glib answer is that industry efforts to build more eff... » read more

Power/Performance Bits: Oct. 11


Getting to 1nm Researchers at the Lawrence Berkeley National Laboratory, UC Berkeley, University of Texas at Dallas, and Stanford University created a transistor with a working 1nm gate from carbon nanotubes and molybdenum disulfide (MoS2). "The semiconductor industry has long assumed that any gate below 5 nanometers wouldn't work, so anything below that was not even considered," said fir... » read more

Joint R&D Has Its Ups And Downs


As corporate spending on research and development dwindles, enterprises are reaching out to colleges and universities to supplement their R&D. And they often are finding eager partners in those endeavors, as professors and their graduate students look for help, financial and technical, in addressing long-term research projects. “Pure research is just a luxury no one can afford anymore,... » read more

System Bits: Aug. 16


Record-breaking quantum logic gate Reaching the benchmark required theoretically to build a quantum computer, University of Oxford researchers have achieved a quantum logic gate with record-breaking 99.9% precision. They reminded that quantum computers, which function according to the laws of quantum physics, have the potential to dwarf the processing power of today's computers, able to pro... » read more

System Bits: Aug. 9


Using trapped ions as quantum bits MIT researchers reminded that quantum computers are largely hypothetical devices that could perform some calculations much more rapidly than conventional computers can, and instead of the bits of classical computation — which can represent 0 or 1 — quantum computers consist of quantum bits, or qubits, which can, in some sense, represent 0 and 1 simultaneo... » read more

Will Open-Source Work For Chips?


Open source is getting a second look by the semiconductor industry, driven by the high cost of design at complex nodes along with fragmentation in end markets, which increasingly means that one size or approach no longer fits all. The open source movement, as we know it today, started in the 1980s with the launch of the GNU project, which was about the time the electronic design automation (... » read more

System Bits: June 21


Faster running parallel programs, one-tenth the code MIT researchers reminded that computer chips have stopped getting faster and that for the past 10 years, performance improvements have come from the addition of cores. In theory, they said, a program on a 64-core machine would be 64 times as fast as it would be on a single-core machine but it rarely works out that way. Most computer programs... » read more

Alternative To x86, ARM Architectures?


Software developed by professors and graduate students from the University of California at Berkeley? That will never fly in the semiconductor industry, right? Maybe they said that about SPICE, four decades ago. The jury is still out on RISC-V (pronounced risk-five) the modular, open-source instruction set architecture created in this decade by Cal professors and students, yet the ISA is gai... » read more

Power/Performance Bits: May 24


Reducing MRAM chip area Researchers from Tohoku University developed a technology to stack magnetic tunnel junctions (MTJ) directly on the via without causing deterioration to its electric/magnetic characteristics. The team focused on reducing the memory cell area of spin-transfer torque magnetic random access memory (STT-MRAM) in order to lower manufacturing costs, making them more compe... » read more

Power/Performance Bits: April 19


Ferroelectric non-volatile memory Scientists from the Moscow Institute of Physics and Technology (MIPT), the University of Nebraska, and the University of Lausanne in Switzerland succeeded in growing ultra-thin (2.5-nanometer) ferroelectric films based on hafnium oxide that could potentially be used to develop non-volatile memory elements called ferroelectric tunnel junctions. The film was g... » read more

← Older posts