System Bits: May 8


Unlocking the brain Stanford University researchers recently reminded that for years, the people developing artificial intelligence drew inspiration from what was known about the human brain, and now AI is starting to return the favor: while not explicitly designed to do so, certain AI systems seem to mimic our brains’ inner workings more closely than previously thought. [caption id="attach... » read more

System Bits: April 3


Investigating the human brain for quantum computation potential While much has been made of quantum computing processes using ultracold atoms and ions, superconducting junctions and defects in diamonds, researchers are questioning if this could be performed in human brains. In fact, UC Santa Barbara theoretical physicist Matthew Fisher has been asking this question for years. And now as scient... » read more

Applying Machine Learning To Chips


The race is on to figure out how to apply analytics, data mining and machine learning across a wide swath of market segments and applications, and nowhere is this more evident than in semiconductor design and manufacturing. The key with ML/DL/AI is understanding how devices react to real events and stimuli, and how future devices can be optimized. That requires sifting through an expandi... » read more

Materials For Future Electronics


Examining the research underway in electronics materials provides a keyhole view into what may be possible in future electronics design. Although some of this research will not end up in commercial products, it does provide an indication of the kinds of problems that are being addressed, how they are being approached, and where the research dollars are being spent. Flexible electronics are a... » read more

Manufacturing Bits: Feb. 7


The University of California at Santa Barbara claims to have developed the world’s smallest hammer. The technology, dubbed the μHammer or microHammer, is geared for biomedical research. With funding from the National Science Foundation (NSF), the tiny hammer will allow researchers to get a cellular-level understanding when force is applied to brain cells. The project is part of the U.S.-b... » read more

Power/Performance Bits: Nov. 8


Scrap metal batteries A research team at Vanderbilt University used scraps of steel and brass - two of the most commonly discarded materials - to create a steel-brass battery that can store energy at levels comparable to lead-acid batteries while charging and discharging at rates comparable to ultra-fast charging supercapacitors. The researchers found that when scraps of steel and brass a... » read more

Silicon Photonics Comes Into Focus


Silicon photonics is attracting growing attention and investment as a companion technology to copper wiring inside of data centers, raising new questions about what comes next and when. Light has always been the ultimate standard for speed. It requires less energy to move large quantities of data, generates less heat than electricity, and it can work equally well over long or short distances... » read more

Power/Performance Bits: Dec. 8


Reducing transistor switching power One of the great challenges in electronics has been to reduce power consumption during transistor switching operation. However, engineers at University of California, Santa Barbara, and Rice University demonstrated a new transistor that switches at only 0.1 volts and reduces power dissipation by over 90% compared to state-of-the-art MOSFETs. "The steepn... » read more

Tale Of Two HLS Viewpoints


The Design Automation Conference attracts several co-located conferences, symposiums and other such gathering of people, often on more specialized topics than would appeal to the general DAC attendees. Some of them are more research-focused, but one conference is somewhat strange in that it is about a subject that has transitioned to commercial tool development and yet still remains an active a... » read more

System Bits: March 24


A better band-aid UC Berkeley engineers are working on a bandage that can detect bedsores before they are visible - while recovery from them is still possible. Leveraging flexible electronics advancements, the researchers collaborated with colleagues at UC San Francisco to create their “smart bandage” that uses electrical currents to detect early tissue damage from pressure ulcers as th... » read more

← Older posts Newer posts →