Can We Measure Next-Gen FinFETs?


After ramping up their respective 16nm/14nm finFET processes, chipmakers are moving towards 10nm and/or 7nm, with 5nm in R&D. But as they move down the process roadmap, they will face a new set of fab challenges. In addition to lithography and interconnects, there is metrology. Metrology, the science of measurements, is used to characterize tiny films and structures. It helps to boost yi... » read more

Manufacturing Bits: April 26


Multi-beam inspection For some time, Singaporean startup Maglen has been developing a multi-beam e-beam inspection tool technology. Now, Maglen has reached two milestones. First, it has devised a full column test stand. The test stand includes a mechanical column and software. The second milestone is also significant. “We also dropped our beam and obtained our very first images,” sai... » read more

Measuring FinFETs Will Get Harder


The industry is gradually migrating toward chips based on finFET transistors at 16nm/14nm and beyond, but manufacturing those finFETs is proving to be a daunting challenge in the fab. Patterning is the most difficult process for finFETs. But another process, metrology, is fast becoming one of the biggest challenges for the next-generation transistor technology. In fact, [getkc id="252" kc_n... » read more

Next-Gen Metrology: Searching For A Bright X-Ray Source


By Debra Vogler Metrology for semiconductor applications is a broad topic regardless of whether one is talking about front-end-of-line (FEOL) or back-end-of-line (BEOL) technologies. Benjamin Bunday, project manager, CD Metrology and senior member of the technical staff at SEMATECH, broke down the topic of next-generation metrology at 10nm and below into four main categories for SEMI: • I... » read more