Minimizing automotive recalls with product traceability.
Automotive product traceability has existed in one form or another for several decades. Traceability generally refers to tracking and tracing each component that comprises every subsystem in a car. Traditionally, this has been achieved with direct part marking on mechanical or electronic components, using 1D or 2D barcodes or radio-frequency identification (RFID). Since vehicle recalls are costly, this process was originated to capture the origins of critical components. Recently, manufacturing traceability has evolved from a defensive mindset of ‘minimizing recalls’ to a proactive posture of ‘compliance.’ As compliance mandates increase, so do the associated fines for non-compliance. The Federal Transportation, Recall Enhancement, Accountability and Documentation (TREAD) Act requires vehicle manufacturers to report to the National Highway Traffic Safety Administration (NHTSA) any excursions on the reliability of the components. As a result, manufacturers rely on traceability to keep abreast of gaps in the value chain to meet end user safety requirements.
By Dr. Ajay Sattu, Sr Manager, Automotive Strategic Marketing, Amkor Technology, Inc.
Click here to read more.
While terms often are used interchangeably, they are very different technologies with different challenges.
The industry is gaining ground in understanding how aging affects reliability, but more variables make it harder to fix.
Key pivot and innovation points in semiconductor manufacturing.
Tools become more specific for Si/SiGe stacks, 3D NAND, and bonded wafer pairs.
Thinner photoresist layers, line roughness, and stochastic defects add new problems for the angstrom generation of chips.
Less precision equals lower power, but standards are required to make this work.
While terms often are used interchangeably, they are very different technologies with different challenges.
Open-source processor cores are beginning to show up in heterogeneous SoCs and packages.
New applications require a deep understanding of the tradeoffs for different types of DRAM.
Open source by itself doesn’t guarantee security. It still comes down to the fundamentals of design.
How customization, complexity, and geopolitical tensions are upending the global status quo.
127 startups raise $2.6B; data center connectivity, quantum computing, and batteries draw big funding.
The industry is gaining ground in understanding how aging affects reliability, but more variables make it harder to fix.
Leave a Reply