What’s Missing In EUV?


Extreme ultraviolet (EUV) lithography is expected to move into production at 7nm and/or 5nm, but as previously reported, there are some gaps in the arena. At one time, the power source was the big problem, but that appears to be solved in the near term. Now, a phenomenon called stochastic effects, or random variations, are the biggest challenge for EUV lithography. But at most events, th... » read more

Chipmakers Look Beyond Scaling


Gary Patton, CTO of GlobalFoundries, sat down with Semiconductor Engineering to discuss the rollout of EUV, the rising cost of designing chips at the most advanced nodes, and the growing popularity of 22nm planar FD-SOI in a number of markets. What follows are excerpts of that conversation. SE: You've just begun deploying EUV. Are you experiencing any issues? Patton: It's a very complicat... » read more

More Lithography/Mask Challenges (Part 3)


Semiconductor Engineering sat down to discuss lithography and photomask technologies with Gregory McIntyre, director of the Advanced Patterning Department at [getentity id="22217" e_name="Imec"]; Harry Levinson, senior fellow and senior director of technology research at [getentity id="22819" comment="GlobalFoundries"]; Regina Freed, managing director of patterning technology at [getentity id="... » read more

More Nodes, New Problems


The rollout of leading-edge process nodes is accelerating rather than slowing down, defying predictions that device scaling would begin to subside due to rising costs and the increased difficulty of developing chips at those nodes. Costs are indeed rising. So are the number of design rules, which reflect skyrocketing complexity stemming from multiple patterning, more devices on a chip, and m... » read more

Next EUV Issue: Mask 3D Effects


As extreme ultraviolet (EUV) lithography moves closer to production, the industry is paying more attention to a problematic phenomenon called mask 3D effects. Mask 3D effects involve the photomask for EUV. In simple terms, a chipmaker designs an IC, which is translated from a file format into a photomask. The mask is a master template for a given IC design. It is placed in a lithography scan... » read more

New Patterning Options Emerging


Several fab tool vendors are rolling out the next wave of self-aligned patterning technologies amid the shift toward new devices at 10/7nm and beyond. Applied Materials, Lam Research and TEL are developing self-aligned technologies based on a variety of new approaches. The latest approach involves self-aligned patterning techniques with multi-color material schemes, which are designed for us... » read more

Searching For EUV Defects


Chipmakers hope to insert extreme ultraviolet (EUV) lithography at 7nm and/or 5nm, but several challenges need to be solved before this oft-delayed technology can be used in production. One lingering issue that is becoming more worrisome is how to find defects caused by [gettech id="31045" comment="EUV"] processes. These processes can cause random variations, also known as stochastic effects... » read more

More Lithography/Mask Challenges (Part 2)


Semiconductor Engineering sat down to discuss lithography and photomask technologies with Gregory McIntyre, director of the Advanced Patterning Department at [getentity id="22217" e_name="Imec"]; Harry Levinson, senior fellow and senior director of technology research at [getentity id="22819" comment="GlobalFoundries"]; Regina Freed, managing director of patterning technology at [getentity id="... » read more

What Happened To Nanoimprint Litho?


Nanoimprint lithography (NIL) is re-emerging amid an explosion of new applications in the market. Canon, EV Group, Nanonex, Suss and others continue to develop and ship NIL systems for a range of markets. NIL is different than conventional lithography and resembles a stamping process. Initially, a lithographic system forms a pattern on a template based on a pre-defined design. Then, a separa... » read more

Self-Aligned Block And Fully Self-Aligned Via For iN5 Metal 2 Self-Aligned Quadruple Patterning


This paper assesses Self-Aligned Block (SAB) and Fully Self-Aligned Via (FSAV) approaches to patterning using a iN5 (imec node 5 nm) vehicle and Metal 2 Self-Aligned Quadruple Patterning. We analyze SAB printability in the lithography process using process optimization, and demonstrate the effect of SAB on patterning yield for a (8 M2 lines x 6 M1 lines x 6 Via) structure. We show that FSAV, co... » read more

← Older posts Newer posts →