Better Choreography Required For Complex Chips


The rapidly growing number of features and options in chip design are forcing engineering teams to ratchet up their planning around who does what, when it gets done, and how various components will interact. In effect, more elements in the design flow need to be choreographed much more precisely. Some steps have to shift further left, while others need to be considered earlier in the plannin... » read more

Heterogeneous Integration — Chiplets


Chiplets are a hot topic in the semiconductor industry, and to many, represent a paradigm change for chip designers and chip consumers alike. While heterogenous chiplets seem to have multiple advantages over traditional monolithic silicon and even homogenous chiplets, they still have not been mass-market deployed. This white paper, published in cooperation with the Global Semiconductor Alliance... » read more

Chip Design CEO Outlook


Semiconductor Engineering sat down with Joseph Sawicki, executive vice president for IC EDA at Siemens Digital Industries Software; John Kibarian, president and CEO of PDF Solutions; John Lee, general manager and vice president of Ansys' Semiconductor Business Unit; Niels Faché, vice president and general manager of PathWave Software Solutions at Keysight; Dean Drako, president and CEO of IC M... » read more

Chips Getting More Secure, But Not Quickly Enough


Experts at the Table: Semiconductor Engineering sat down to talk about the impact of heterogeneous integration, more advanced RISC-V designs, and a growing awareness of security threats, with Mike Borza, Synopsys scientist; John Hallman, product manager for trust and security at Siemens EDA; Pete Hardee, group director for product management at Cadence; Paul Karazuba, vice president of marketin... » read more

Enabling New Functionality In Medtech And Biotech Devices


Medtech and biotech devices are uniquely suited to benefit from emerging electronic capabilities – specifically, the kind of electronics design, packaging and assembly offerings that are Promex’s specialty. With that said, these markets present a variety of manufacturing challenges and demands that require heterogeneous integration (HI) to address. This two-part blog post provides a high... » read more

Heterogeneous Chip Assembly Helps Optimize Medical And Wearable Devices


Heterogeneous integration (HI) has significant implications for the medical, health, and wearables industry. At Promex, we utilize a variety of complex assembly processes to achieve HI for medical and biotech applications. This post will take a closer look at the processes associated with assembling these classes of devices. Click here to read more. » read more

Impact Of Increased IC Performance On Memory


Increasing performance in advanced semiconductors is becoming more difficult as chips become more complex. There are more physical effects to contend with, different use cases, and challenges in making memory go faster. In addition, aging effects that once were ignored are now becoming critical concerns. Steven Woo, fellow and distinguished inventor at Rambus, talks about different factors that... » read more

Room-Temperature Metal Bonding Technology That Facilitates The Fabrication of 3D-ICs & 3D Integration With Heterogeneous Devices


A technical paper titled "Room-Temperature Direct Cu Semi-Additive Plating (SAP) Bonding for Chip-on-Wafer 3D Heterogenous Integration With μLED" was published by researchers at Tohoku University in Japan. Abstract: "This letter describes a direct Cu bonding technology to there-dimensionally integrate heterogeneous dielets based on a chip-on-wafer configuration. 100- μm -cubed blue μ LED... » read more

Test Challenges Mount As Demands For Reliability Increase


An emphasis of improving semiconductor quality is beginning to spread well beyond just data centers and automotive applications, where ICs play a role in mission- and safety-critical applications. But this focus on improved reliability is ratcheting up pressure throughout the test community, from lab to fab and into the field, in products where transistor density continues to grow — and wh... » read more

How To Build Resilience Into Chips


Disaggregating chips into specialized processors, memories, and architectures is becoming necessary for continued improvements in performance and power, but it's also contributing to unusual and often unpredictable errors in hardware that are extremely difficult to find. The sources of those errors can include anything from timing errors in a particular sequence, to gaps in bonds between chi... » read more

← Older posts Newer posts →