Lithography Options For Next-Gen Devices


Chipmakers are ramping up extreme ultraviolet (EUV) lithography for advanced logic at 7nm and/or 5nm, but EUV isn’t the only lithographic option on the table. For some time, the industry has been working on an assortment of other next-generation lithography technologies, including a new version of EUV. Each technology is different and aimed at different applications. Some are here today, w... » read more

Improving SAQP Patterning Yield Using Virtual Fabrication And Advanced Process Control


Advanced logic scaling has created some difficult technical challenges, including a requirement for highly dense patterning. Imec recently confronted this challenge, by working toward the use of Metal 2 (M2) line patterning with a 16 nm half-pitch for their 7nm node (equivalent to a 5nm foundry node). Self-Aligned Quadruple Patterning (SAQP) was investigated as an alternative path to Extreme Ul... » read more

Virtual Fabrication And Advanced Process Control Improve Yield For SAQP Process Assessment With 16nm Half-Pitch


This paper uses Virtual Fabrication to assess the Imec 7nm node (iN7) Self-Aligned Quadruple Patterning (SAQP) integration scheme for the 16nm half-pitch Metal 2 line formation. We first present the technical challenge of obtaining defect-free M2 lines with SAQP, and then provide a solution to achieve a » read more

N7 FinFET Self-Aligned Quadruple Patterning Modeling


Authors: Sylvain Baudot, Sofiane Guissi, Alexey P. Milenin, Joseph Ervin, Tom Schram (IMEC and COVENTOR) In this paper, we model fin pitch walk based on a process flow simulation using the Coventor SEMulator3D virtual platform. A taper angle of the fin core is introduced into the model to provide good agreement with silicon data. The impact on various Self-Aligned Quadruple Patterning proces... » read more

FD-SOI Going Mainstream


Semiconductor Engineering sat down to discuss changes in the FD-SOI world and what's behind them, with James Lamb, deputy CTO for advanced semiconductor manufacturing and corporate technical fellow at Brewer Science; Giorgio Cesana, director of technical marketing at STMicroelectronics; Olivier Vatel, senior vice president and CTO at Screen Semiconductor Solutions; and Carlos Mazure, CTO at Soi... » read more

Dealing With Resistance In Chips


Chipmakers continue to scale the transistor at advanced nodes, but they are struggling to maintain the same pace with the other two critical parts of the device—the contacts and interconnects. That’s beginning to change, however. In fact, at 10nm/7nm, chipmakers are introducing new topologies and materials such as cobalt, which promises to boost the performance and reduce unwanted resist... » read more

New Patterning Options Emerging


Several fab tool vendors are rolling out the next wave of self-aligned patterning technologies amid the shift toward new devices at 10/7nm and beyond. Applied Materials, Lam Research and TEL are developing self-aligned technologies based on a variety of new approaches. The latest approach involves self-aligned patterning techniques with multi-color material schemes, which are designed for us... » read more

More Lithography/Mask Challenges (Part 2)


Semiconductor Engineering sat down to discuss lithography and photomask technologies with Gregory McIntyre, director of the Advanced Patterning Department at [getentity id="22217" e_name="Imec"]; Harry Levinson, senior fellow and senior director of technology research at [getentity id="22819" comment="GlobalFoundries"]; Regina Freed, managing director of patterning technology at [getentity id="... » read more

Self-Aligned Block And Fully Self-Aligned Via For iN5 Metal 2 Self-Aligned Quadruple Patterning


This paper assesses Self-Aligned Block (SAB) and Fully Self-Aligned Via (FSAV) approaches to patterning using a iN5 (imec node 5 nm) vehicle and Metal 2 Self-Aligned Quadruple Patterning. We analyze SAB printability in the lithography process using process optimization, and demonstrate the effect of SAB on patterning yield for a (8 M2 lines x 6 M1 lines x 6 Via) structure. We show that FSAV, co... » read more

Improving Patterning Yield At The 5nm Semiconductor Node


Engineering decisions are always data-driven. As scientists, we only believe in facts and not in intuition or feelings. At the manufacturing stage, the semiconductor industry is eager to provide data and facts to engineers based upon metrics such as the quantity of wafers produced per hour and sites/devices tested on each of those wafers. The massive quantity of data generated in semiconduct... » read more

← Older posts