Home
TECHNICAL PAPERS

Accelerator Architecture For In-Memory Computation of CNN Inferences Using Racetrack Memory

popularity

A new technical paper titled “Hardware-software co-exploration with racetrack memory based in-memory computing for CNN inference in embedded systems” was published by researchers at National University of Singapore, A*STAR, Chinese Academy of Sciences, and Hong Kong University of Science and Technology.

Abstract
“Deep neural networks generate and process large volumes of data, posing challenges for low-resource embedded systems. In-memory computing has been demonstrated as an efficient computing infrastructure and shows promise for embedded AI applications. Among newly-researched memory technologies, racetrack memory is a non-volatile technology that allows high data density fabrication, making it a good fit for in-memory computing. However, integrating in-memory arithmetic circuits with memory cells affects both the memory density and power efficiency. It remains challenging to build efficient in-memory arithmetic circuits on racetrack memory within area and energy constraints. To this end, we present an efficient in-memory convolutional neural network (CNN) accelerator optimized for use with racetrack memory. We design a series of fundamental arithmetic circuits as in-memory computing cells suited for multiply-and-accumulate operations. Moreover, we explore the design space of racetrack memory based systems and CNN model architectures, employing co-design to improve the efficiency and performance of performing CNN inference in racetrack memory while maintaining model accuracy. Our designed circuits and model-system co-optimization strategies achieve a small memory bank area with significant improvements in energy and performance for racetrack memory based embedded systems.”

Find the technical paper here. July 2025.

https://doi.org/10.48550/arXiv.2507.01429 with related DOI



Leave a Reply


(Note: This name will be displayed publicly)