Using DSA With EUV


James Lamb, deputy CTO for advanced semiconductor manufacturing and corporate technical fellow at Brewer Science, looks at how directed self-assembly can be used to supplement EUV at advanced nodes. https://youtu.be/PItF4egHOxc     See other tech talk videos here » read more

EUV’s Uncertain Future


The ground appears to be solidifying under EUV. Intel announced this week it is reducing its stake in ASML to less than 3%, the second such move in a year. Apparently ASML no longer needs outside help. According to the company's earnings report, ASML turned in net sales of €2.776 billion, a slight increase over the €2.447 billion (GAAP) the company reported in Q3 and way up over the €... » read more

Variation At 10/7nm


Klaus Schuegraf, vice president of new products and solutions at PDF Solutions, explains why variability is a growing challenge at advanced nodes, why middle of line is now one of the big problem areas, and what happens when a via is misaligned due to a small process variation. https://youtu.be/jQfggOnxZJQ » read more

Variation’s Long, Twisty Tail Worsens At 7/5nm


Variation is becoming a bigger challenge at each new node, but not just for obvious reasons and not always from the usual sources. Nevertheless, dealing with these issues takes additional time and resources, and it can affect the performance and reliability of those chips throughout their lifetimes. At a high level, variation historically was viewed as a mismatch between what design teams in... » read more

What Else Is In A Node?


In part one of this blog, I reported on the 2018 Industry Strategy Symposium (ISS) where Dan Hutcheson of VLSI Research led a panel with representatives of Synopsys, NVIDIA, Intel, ASML and Applied Materials. The participants discussed how the industry is focused on simultaneously squeezing more capabilities from leading-nodes, inter-nodes and trailing-nodes to drive advances in computing. I to... » read more

Chip Dis-Integration


Just because something can be done does not always mean that it should be done. One segment of the semiconductor industry is learning the hard way that continued chip integration has a significant downside. At the same time, another another group has just started to see the benefits of consolidating functionality onto a single substrate. Companies that have been following Moore's Law and hav... » read more

What’s Missing In EUV?


Extreme ultraviolet (EUV) lithography is expected to move into production at 7nm and/or 5nm, but as previously reported, there are some gaps in the arena. At one time, the power source was the big problem, but that appears to be solved in the near term. Now, a phenomenon called stochastic effects, or random variations, are the biggest challenge for EUV lithography. But at most events, th... » read more

Chipmakers Look Beyond Scaling


Gary Patton, CTO of GlobalFoundries, sat down with Semiconductor Engineering to discuss the rollout of EUV, the rising cost of designing chips at the most advanced nodes, and the growing popularity of 22nm planar FD-SOI in a number of markets. What follows are excerpts of that conversation. SE: You've just begun deploying EUV. Are you experiencing any issues? Patton: It's a very complicat... » read more

More Lithography/Mask Challenges (Part 3)


Semiconductor Engineering sat down to discuss lithography and photomask technologies with Gregory McIntyre, director of the Advanced Patterning Department at [getentity id="22217" e_name="Imec"]; Harry Levinson, senior fellow and senior director of technology research at [getentity id="22819" comment="GlobalFoundries"]; Regina Freed, managing director of patterning technology at [getentity id="... » read more

More Nodes, New Problems


The rollout of leading-edge process nodes is accelerating rather than slowing down, defying predictions that device scaling would begin to subside due to rising costs and the increased difficulty of developing chips at those nodes. Costs are indeed rising. So are the number of design rules, which reflect skyrocketing complexity stemming from multiple patterning, more devices on a chip, and m... » read more

← Older posts Newer posts →