Extending Copper Interconnect Beyond The 14nm Node


Fabricating interconnects is one of the most process-intensive and cost-sensitive parts of manufacturing. To find out more about what's changing in this area and why it's so important, click here. » read more

Executive Briefing: Wally Rhines


By Ed Sperling System-Level Design, as part of its ongoing executive briefing series, sat down with Wally Rhines, Mentor Graphics' chairman and CEO, to talk about future problems, opportunities, and the gray areas that could go either way. What follows are excerpts of that conversation. SLD: Is the amount of time spent on verification increasing? Rhines: It depends on how you define who s... » read more

Nanoscale Wiring


By Kathryn Ta The TEM image (below) taken at Applied Materials’ Maydan Technology Center shows a series of 20nm-wide trenches in cross section. These tiny structures – about 1/5000th of the diameter of an average human hair – are similar to the interconnects used to wire the billions of transistors in next-generation microchips. You can see that each trench is partially filled with coppe... » read more

What Will Replace Dual Damascene?


By Mark LaPedus In the mid-1990s, IBM announced the world’s first devices using a copper dual damascene process. At the time, the dual damascene manufacturing process was hailed as a major breakthrough. The new copper process enabled IC makers to scale the tiny interconnects in a device, as the previous material, aluminum, faced some major limitations. Dual damascene remains the workhorse... » read more

Interconnect Troubles


By Mehul Naik These days, transistor scaling is driving some of the most exciting innovations in device architecture and getting lots of attention as a result. What may be less obvious is the cascading effect transistor scaling is having on the interconnect. The biggest challenges result directly from pitch reduction required to support the increasing functionality. These include poor pattern ... » read more

Interconnect Performance In The Spotlight


By Richard Lewington Are you going to be in the San Francisco area on December 11th? We're hosting a forum to explore the path that interconnect technology must take to keep pace with transistor scaling and the transition to new 3D architectures. Transistors get all the attention these days as the savior of Moore's Law. But there's no point making transistors faster if the wires between ... » read more

The Threat Within


By Connie Duncan Given that today’s advanced chips can contain billions of transistors, 60 miles of copper wiring and 10 billion vertical connections between metal layers, the challenges and potential pitfalls this level of complexity presents are mind-boggling. One major problem on the horizon at 20nm and below is the threat of voids forming in the vertical interconnects commonly called via... » read more

Flowing Copper


By Richard Lewington If you were to slice up a microchip and take a look (you’d need a really powerful microscope, I'm afraid) you would see what looks like a nanoscale layer cake. All the active circuit elements—transistors, memory cells, etc.—are on the bottom. The other 90% of the chip is a maze of tiny copper wires, which we call interconnects. The history of chip developme... » read more

Capping Tools Tame Electromigration


By Mark LaPedus The shift towards the 28nm node and beyond has put the spotlight back on the interconnect in semiconductor manufacturing. In chip scaling, the big problem in the interconnect is resistance-capacitance (RC). Another, and sometimes forgotten, issue is electromigration. “Electromigration gets worse in device scaling,” said Daniel Edelstein, an IBM Fellow and manager of BE... » read more

Experts At The Table: Does 20nm Break System-Level Design?


By Ann Steffora Mutschler System-Level Design sat down to discuss design at 20nm with Drew Wingard, chief technology officer at Sonics; Kelvin Low, deputy director of product marketing at GlobalFoundries, Frank Schirrmeister, group director of product marketing for system development in the system and software realization group at Cadence; and Mike Gianfagna, vice president of marketing at Atr... » read more

← Older posts Newer posts →