中文 English

Designing For Thermal


Heat has emerged as a major concern for semiconductors in every form factor, from digital watches to data centers, and it is becoming more of a problem at advanced nodes and in advanced packages where that heat is especially difficult to dissipate. Temperatures at the base of finFETs and GAA FETs can differ from those at the top of the transistor structures. They also can vary depending on h... » read more

Electromagnetic Simulation And 3D-IC Interposers


By Matt Commens, Juliano Mologni, and Pete Gasperini Today’s 3D integrated circuit (3D-IC) technology is the culmination of 40 years of research in universities and laboratories scattered across the globe. Beginning with dynamic random-access memory (DRAM) deployments that appeared on the market a decade ago, 3D-IC has since expanded its reach. It is now decisively beginning to achieve the... » read more

3D IC: Opportunities, Challenges, And Solutions


Nearly every big city reaches a point in its evolution when it runs out of open space and starts building vertically. This enables far more apartments, offices and people per square mile, while avoiding the increased infrastructure costs of suburban sprawl. Semiconductors are evolving in much the same way. Moore’s Law is slowing, and adoption of new advanced technology nodes is slowing as wel... » read more

Chipmakers Getting Serious About Integrated Photonics


Integrating photonics into semiconductors is gaining traction, particularly in heterogeneous multi-die packages, as chipmakers search for new ways to overcome power limitations and deal with increasing volumes of data. Power has been a growing concern since the end of Dennard scaling, which happened somewhere around the 90nm node. There are more transistors per mm², and the wires are thinne... » read more

Bumps Vs. Hybrid Bonding For Advanced Packaging


Advanced packaging continues to gain steam, but now customers must decide whether to design their next high-end packages using existing interconnect schemes or move to a next-generation, higher-density technology called copper hybrid bonding. The decision is far from simple, and in some cases both technologies may be used. Each technology adds new capabilities in next-generation advanced pac... » read more

Advanced Packaging’s Next Wave


Packaging houses are readying the next wave of advanced packages, enabling new system-level chip designs for a range of applications. These advanced packages involve a range of technologies, such as 2.5D/3D, chiplets, fan-out and system-in-package (SiP). Each of these, in turn, offers an array of options for assembling and integrating complex dies in an advanced package, providing chip custo... » read more

New RDL-First PoP Fan-Out Wafer-Level Package Process With Chip-to-Wafer Bonding Technology


Fan-Out Wafer-Level Interposer Package-on Package (PoP) design has many advantages for mobile applications such as low power consumption, short signal path, small form factor, and heterogeneous integration for multifunctions. In addition, it can be applied in various package platforms, including PoP, System-in-Package (SiP), and Chip Scale Package (CSP). These advantages come from advanced inte... » read more

High-Performance Memory For AI And HPC


Frank Ferro, senior director of product management at Rambus, examines the current performance bottlenecks in high-performance computing, drilling down into power and performance for different memory options, and explains what are the best solutions for different applications and why. » read more

Chiplet Momentum Rising


The chiplet model is gaining momentum as an alternative to developing monolithic ASIC designs, which are becoming more complex and expensive at each node. Several companies and industry groups are rallying around the chiplet model, including AMD, Intel and TSMC. In addition, there is a new U.S. Department of Defense (DoD) initiative. The goal is to speed up time to market and reduce the cost... » read more

Thermal Challenges In Advanced Packaging


CT Kao, product management director at Cadence, talks with Semiconductor Engineering about why packaging is so complicated, why power and heat vary with different use cases and over time, and why a realistic power map is essential particularly for AI chips, where some circuits are always on.   Interested in more Semiconductor Engineering videos? Sign-up for our YouTube channel here » read more

← Older posts