Nanosheet GeSn pTFTs: High Performance, Low Thermal Budget


New technical paper titled "Remarkably High-Performance Nanosheet GeSn Thin-Film Transistor" from researchers at National Yang Ming Chiao Tung University and others. Abstract "High-performance p-type thin-film transistors (pTFTs) are crucial for realizing low-power display-on-panel and monolithic three-dimensional integrated circuits. Unfortunately, it is difficult to achieve a high hole ... » read more

Inner Spacer Engineering to Improve Mechanical Stability in Channel-Release Process of Nanosheet FETs


  Abstract "Mechanical stress is demonstrated in the fabrication process of nanosheet FETs. In particular, unwanted mechanical instability stemming from gravity during channel-release is covered in detail by aid of 3-D simulations. The simulation results show the physical weakness of suspended nanosheets and the impact of nanosheet thickness. Inner spacer engineering based on geometr... » read more

Advancing To The 3nm Node And Beyond: Technology, Challenges And Solutions


It seems like yesterday that finFETs were the answer to device scaling limitations imposed by shrinking gate lengths and required electrostatics. The introduction of finFETs began at the 22nm node and has continued through the 7nm node. Beyond 7nm, it looks like nanosheet device structures will be used for at least the 5nm and probably the 3nm nodes. The nanosheet device structure is the brainc... » read more

Stacked Nanosheets And Forksheet FETs


What comes next after gate-all-around FETs is still being worked out, but it likely will involve some version of stacked nanosheets. The design of advanced transistors is a tradeoff. On one hand, it takes less gate capacitance to control a thin channel. On the other hand, thin channels can’t carry as much drive current. Stacked nanosheet designs seek to reconcile these two objectives by... » read more

5nm Vs. 3nm


Foundry vendors are readying the next wave of advanced processes, but their customers will face a myriad of confusing options—including whether to develop chips at 5nm, wait until 3nm, or opt for something in between. The path to 5nm is well-defined compared with 3nm. After that, the landscape becomes more convoluted because foundries are adding half-node processes to the mix, such as 6nm ... » read more

Manufacturing Bits: Jan. 2


Better nanowire MOSFETs At the recent IEEE International Electron Devices Meeting (IEDM), Imec and Applied Materials presented a paper on a new and improved way to fabricate vertically stacked gate-all-around MOSFETs. More specifically, Imec and Applied reported on process improvements for a silicon nanowire MOSFET, which is integrated in a CMOS dual work function metal replacement metal ga... » read more

GF Puts 7nm On Hold


GlobalFoundries is putting its 7nm finFET program on hold indefinitely and has dropped plans to pursue technology nodes beyond 7nm. The moves, which mark a major shift in direction for the foundry, involve a headcount reduction of about 5% of its worldwide workforce. At the same time, the company is also moving its ASIC business into a new subsidiary. As a result of GlobalFoundries’ ann... » read more

Inside Chip R&D


Semiconductor Engineering sat down to discuss R&D challenges, EUV and other topics with Luc Van den hove, president and chief executive of Imec, an R&D organization in Belgium. What follows are excerpts of that conversation. SE: Clearly, Moore’s Law is slowing down. The traditional process cadence is extending from 2 years to roughly 2.5 to 3 years. Yet, R&D is not slowing down, right? ... » read more

2.5D, ASICs Extend to 7nm


The leading-edge foundry market is heating up. For example, GlobalFoundries, Intel, Samsung and TSMC have recently announced their new and respective processes. The new processes from vendors range anywhere from 10nm to 4nm, although the current battle is taking place at 10nm and/or 7nm. In fact, one vendor, GlobalFoundries, this week will describe more details about its previously-announced... » read more

Newer posts →