5G Is Coming

When I returned from the holidays, I thought I had entered a time warp. Did I sleep through January and wake up near the end of February? I expected to see the usual deluge of news about the gadgets and gear that will be featured at the upcoming Consumer Electronics Show (CES 2018). Instead, I’ve seen story after story about next-generation 5G mobile networks—typically the stuff of Mobile W... » read more

Toward Self-Driving Cars

The automotive market for semiconductors is shifting into high gear. Right now the average car has about $350 worth of semiconductor content, but that is projected to grow another 50% by 2023 as the overall automotive market for semiconductors grows from $35 billion to $54 billion. This strong growth is being driven by the need to develop what we are calling the ‘connected car.’ The ... » read more

Enabling Automotive Design

Falling automotive electronics prices, propelled by advances in chip manufacturing and innovations on the design side, are driving a whole new level of demand across the automotive industry. Innovations that were introduced at the luxury end of the car market over the past couple years already are being implemented in more standard vehicles. The single biggest driver of change in the automo... » read more

Radar Versus LiDAR

Demand is picking up for vision, radar and LiDAR sensors that enable assisted and autonomous driving capabilities in cars, but carmakers are now pushing for some new and demanding requirements from suppliers. The automotive market always has been tough on suppliers. OEMs want smaller, faster and cheaper devices at the same or improved safety levels for both advanced driver-assistance systems... » read more

The 200mm Equipment Scramble

An explosion in 200mm demand has set off a frenzied search for used semiconductor manufacturing equipment that can be used at older process nodes. The problem is there is not enough used equipment available, and not all of the new or expanding 200mm fabs can afford to pay the premium for refurbished or new equipment. This may sound like a straightforward supply and demand issue, but behind t... » read more

What’s After FinFETs?

Chipmakers are readying their next-generation technologies based on 10nm and/or 7nm finFETs, but it's still not clear how long the finFET will last, how long the 10nm and 7nm nodes for high-end devices will be extended, and what comes next. The industry faces a multitude of uncertainties and challenges at 5nm, 3nm and beyond. Even today, traditional chip scaling continues to slow as process ... » read more

22nm Process War Begins

Many foundry customers at the 28nm node and above are developing new chips and are exploring the idea of migrating to 16nm/14nm and beyond. But for the most part, those companies are stuck because they can’t afford the soaring IC design costs at advanced nodes. Seeking to satisfy a potential gap in the market, [getentity id="22819" comment="GlobalFoundries"], [getentity id="22846" e_name="... » read more

Will Self-Heating Stop FinFETs

New transistor designs and new materials don’t appear out of thin air. Their adoption always is driven by the limitations of the incumbent technology. Silicon germanium and other compound semiconductors are interesting because they promise superior carrier mobility relative to silicon. [getkc id="185" kc_name="FinFET"] transistor designs help minimize short channel effects, a critical limi... » read more

Inside Advanced Patterning

Prabu Raja, group vice president and general manager for the Patterning and Packaging Group at [getentity id="22817" e_name="Applied Materials"], sat down with Semiconductor Engineering to discuss the trends in patterning, selective processes and other topics. Raja is also a fellow at Applied Materials. What follows are excerpts of that conversion. SE: From your standpoint, what are the big... » read more

FD-SOI Strains For The Future

One of the challenges facing supporters of FD-SOI is the need to provide a pathway to improved performance. While FD-SOI wafers offer some significant advantages over bulk silicon wafers, performance enhancements like strain and alternative channel materials are more difficult to implement in the thin SOI environment. On the other hand, once a fab is willing to incorporate layer transfer techni... » read more

← Older posts