System Bits: Oct. 17


Piezoelectric, ingestible sensors With an aim to help doctors diagnose gastrointestinal disorders that slow down the passage of food through the digestive tract, MIT and Brigham and Women’s Hospital researchers have built a flexible sensor that can be rolled up and swallowed. Once ingested, the sensor adheres to the stomach wall or intestinal lining, where it can measure the rhythmic con... » read more

Manufacturing Bits: May 23


Pushing optical metrology The University of Illinois at Urbana-Champaign has developed a new way to determine crystal types using optical metrology techniques. Using an optical-based technique called absorption spectroscopy, researchers have detected tiny nanocrystals down to about 2nm resolutions. Absorption spectroscopy measures the absorption of radiation. It is measured as a function o... » read more

Manufacturing Bits: May 2


Patterning 1nm features The Center for Functional Nanomaterials (CFN) at the Brookhaven National Laboratory has patterned features down to 1nm using a direct-write lithography technique. Using a scanning transmission electron microscope (STEM), researchers have patterned thin films of the polymer poly(methyl methacrylate), or PMMA, down to 1nm with a spacing between features at 11nm. Re... » read more

Power/Performance Bits: Oct. 4


Solar battery Chemists at the University of Wisconsin–Madison and the King Abdullah University of Science and Technology in Saudi Arabia integrated solar cells with a large-capacity battery in a single device that eliminates the usual intermediate step of making electricity and, instead, transfers the energy directly to the battery's electrolyte. The team used a redox flow battery, or R... » read more

System Bits: July 29


Cooper Pairs Researchers at the University of Illinois at Chicago, Cornell University and Brookhaven National Laboratory say they have unlocked what they’re calling quantum glue—the underlying basis for creating energy conduits without current loss. In superconductors, electrical resistance vanishes below a critical temperature and conduction electrons form ordered pairs, known as Coop... » read more